新千歳空港 空港土木技術セミナー

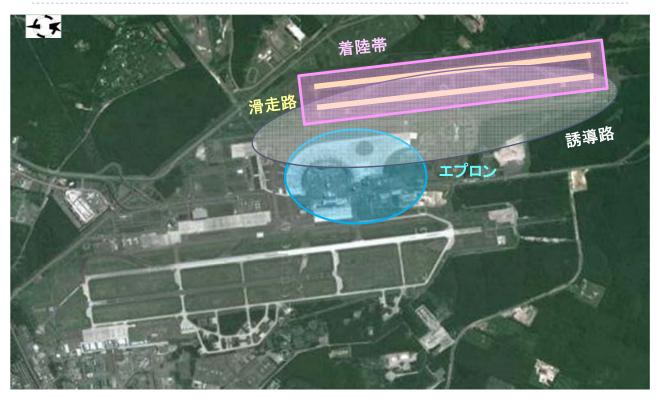
平成25年 2月 8日

積雪寒冷地空港の施設整備

財団法人 港湾空港建設技術サービスセンター 八谷 好高

主な内容

- ▶空港の施設
- ▶空港の用地造成
- ▶空港の基本施設
- ・積雪寒冷地空港の施設
 - → 充実へ向けて


空港の施設

- ▶ 基本施設(土木施設)
 - ▶ 航空機の安全な離着陸や地上走行を行うために必要
 - ▶ 滑走路・誘導路・エプロン・着陸帯
- ▶ 付帯施設(土木施設)
 - ▶ 基本施設の機能維持のために付帯的に必要
 - ▶ 道路•駐車場, 排水施設•共同溝, 場周柵等
- ▶ 空港ターミナル施設
- ▶航空保安施設
- ▶管制施設
- ▶通信施設
- ▶ 管理施設

3

Service Center of Port Engineering
Public corporation approved by the Minister of Land, Infrastructure and Transp

滑走路・エプロン・誘導路・着陸帯

滑走路の計画

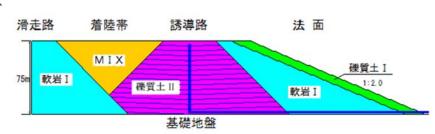
▶滑走路長

- ▶ 航空機性能一離着陸距離
- ▶ 施設条件ー滑走路の路面状態 縦断勾配
- ▶ 気象条件-標高•気温•風

滑走路方位

- ▶ 社会条件一人口集中地区•障害物
- > 気象条件-横風

ト本数と配置

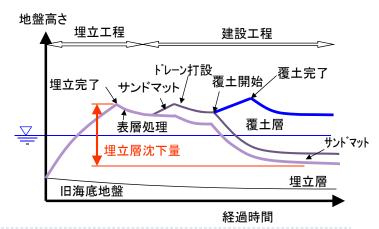

5

- ▶ 社会条件 交通量・セキュリティ
- > 気象条件-積雪

Service Center of Port Engineering
Public corporation approved by the Minister of Land, Infrastructure and Transp

山岳高盛士空港の特徴

- ▶ 切盛土量のバランス
 - ▶ 土量変化率(L値とC値)を考慮して計画作成
- ▶ 盛土の安定
 - ゾーニング


- ▶ 常時:計画安全率は1.2以上
- ▶ 地震時:計画安全率は1.0以上
 - ▶ レベルI地震動:空港の継続的な使用が可能
 - ▶ レベル2地震動:盛土全体が崩壊しない
- 高盛土の残留沈下対策
 - ▶ 軟岩盛土:締固め度の増加
 - 高含水比粘性土盛土:二次圧密量の事前検討

海上埋立空港の特徴

- ▶海底地盤
 - ▶ 千差万別:水深, 土層構成, 堆積年代
- ▶ 用地造成工法
 - ▶ 立地条件(海底地盤,水深,波高,潮流等)

施工技術 経済性

- ト長期的な沈下
 - 沈下予測埋立かさ上げ建設後維持管理

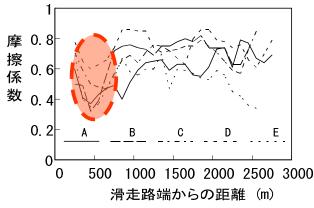
SCOPE Public co

Service Center of Port Engineering

7

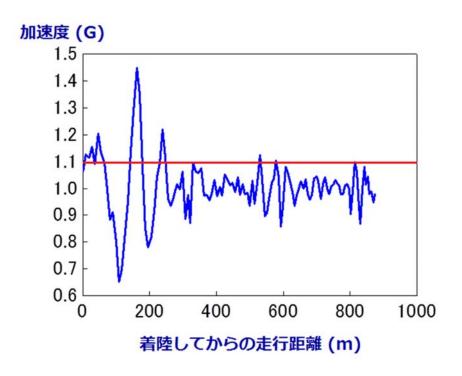
性能一航空機の操縦しやすさ

- ▶ 滑走路·誘導路
 - ▶ 高速走行性, 排水性の観点から
 - ▶ 縦断形状(滑走路)
 - ▶ 走行方向の勾配·その変化量と間隔, 見通し

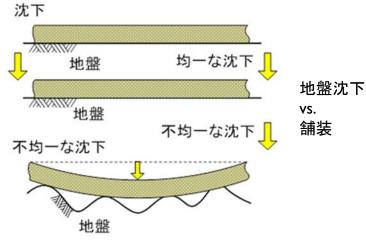

滑走路長(m)	断勾配 (%)	勾配変化量 (%)						
1,500以上	1.0以下	1.5以下						
900以上1,500未満	1.0以下	1.5以下						
900未満	1.5以下	2.0以下						

- ▶ 横断形状(滑走路)
 - ▶ 中心線から左右へ1.5%の下り勾配
- エプロン
 - 排水性, 駐機安定性の観点から
 - ▶ 勾配は0.5~1.0%

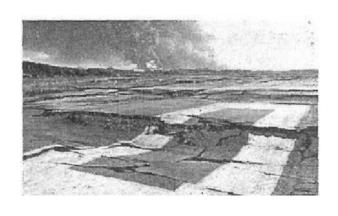
性能一走行安全性(すべり抵抗性)



9

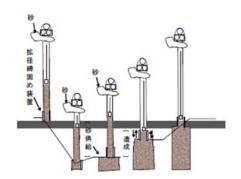

性能-荷重支持力(着陸時衝擊力)

性能一耐不同沈下性

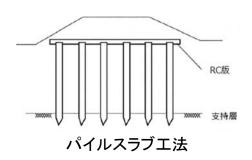

ボーリング孔から
湧き出した埋立土

▶ II

性能一耐震性



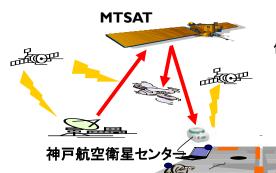
- ▶ 災害時の緊急輸送拠点としての機能
 - 災害時の救急・救命活動,救援物資輸送,陸路復旧までの 代替輸送機関として活用
- ▶ 空港土木施設の耐震化
 - ▶ 地盤の液状化対策は重要な対策の一つ


建設-東京国際空港の液状化対策

実大規模液状化実験

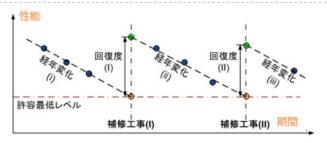
サンドコンパクションパイル工法

13


点検ー空港舗装巡回等点検システム

- モバイルPC
- DGPS受信機

PC画面


位置補強情報MSAS

位置情報

Service Center of Port Engineering
SCOPE Public corporation approved by the Minister of Land, Infrastructure and Tran

補修一空港舗装補修時期最適化 (AirPORTS)

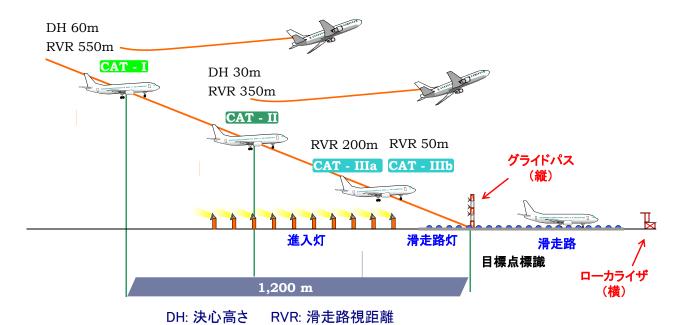
- ▶ 性能経年変化
 - ▶ 直線回帰
- 性能回復度
 - ▶ 工事による増加

施設名	計画年度										_																			
他 故有	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
RWY14-1																														
RWY14-2																														
RWY32-1											42																			
RWY32-2									42																					
RWYB-1										42																				
RWYB-2										46																				
RWYB-3					46										- 1															
RWYB-4																						46								
RWYB-5																														
RWYB-6																														
TWYP1-1									8					8						8					8					
TWYP1-2									8						8					8						8				
TWYP3-1												14			ı												14			
TWYP3-2													14															14		
TWYP3-3												14							14						14					
TWYP3-4													15							15						15				
TWYP3-5												8							8						8					
TWYP4-1											10				- 1											10				
TWYP4-2									11															11		<u> </u>				
TWYT1-1	18					18						18			- 1		18						18					18		
TWYT2-1																														
TWYT3-1																	20													
TWYT4-1							20												20											20
TWYT5-1															20															
TWYT6-1					18															18										
工事費用 (百万円)	18	0	0	0	64	18	20	0	69	88	52	54	29	8	28	0	38	0	42	49	0	46	18	11	30	33	14	32	0	20

15

性能-荷重支持力(不同凍上)

- ▶地盤の凍上
 - 必要に応じて凍上対策をとる
 - ▶ 凍上抑制層, 断熱性の高い材料の採用
 - ▶ 凍上抑制層
 - ▶厚さ:必要置換え深さー舗装厚
 - ▶材料:砂や火山灰,切込砂利等
 - ▶ 不同凍上によるひび割れの事例


性能ー荷重支持力(低温ひび割れ)

- ▶舗装の低温ひび割れ
 - 対象地域
 - ▶ 凍結指数が1,000(°C・日)以上の地域
 - ▶冬期間の最低気温が-20°C以下・温度勾配の 大きい地域
 - > 対策
 - ▶ アスファルト混合物の増厚
 - ▶ アスファルト量の増加
 - ▶ アスファルト種類の変更

17

性能-運航安全性(計器着陸装置)

性能-走行安全性(滑走路除雪体制)

19

性能一走行安全性(すべり抵抗性)

- ▶航空機運航条件
 - ブレーキングアクションによる判定
 - ▶ すべり摩擦係数に基づいて決定

測定値	推定ブレーキングアクション	コード
0.40以上	Good	5
0.39~0.36	Medium~Good	4
0.35~0.30	Medium	3
0.29~0.26	Medium~Poor	2
0.25以下	Poor	I

ト最大積雪深と横風速度により最終判断

建設-走行安全性(すべり抵抗性確保)

グルービング

- ▶ 雨水排水促進によるすべり抵抗性確保

積雪寒冷地空港の施設の充実に向けて

- ▶ 航空の信頼性・空港の利便性確保
 - ▶ 航空機運航の定時性,アクセス時間の減少
- ▶施設の高性能化
 - ▶ 地域特性に合った施設の整備・運用
- ▶施設の工事品質の確保
 - ▶ 地域特性に合った材料・工法の開発
- ▶環境への配慮
 - ▶ 外部排出物・低CO₂対策, 3R
- ▶災害時の対応
 - 災害復旧拠点としての機能

Service Center of Port Engineering

21