加熱アスファルト混合物の施工性能の定量的評価 に関する一検討

(財) 港湾空港建設技術サービスセンター 八谷好高、〇北落謙太郎、渡邊 隆

背景

【日本】

・設計については性能規定型が導入されているが、施工は**仕様規定型**で、検査の結果は合格か不合格のいずれか(中間的なものは通常はない)。

【米国】

- ・道路、空港の舗装工事で性能評価型の工事費の支払い方法。
- ・規格値を満たさなくても合格(但し、減額)とした り、品質が良ければ増額とする。

米国における舗装の品質評価システム

品質に応じて支払額を調整

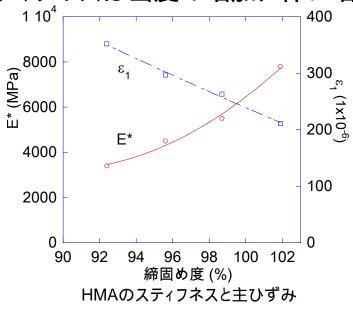
→加熱アスファルト混合物の密度と空隙率からペイファクターを計算

支払額の調整

PWL Percentage of material Within specification Limits	LPF(%): Lot Pay Factor 当初の契約額に対する支払額の割合
96~100	106
90~95	PWL+10.0
75~89	0.5PWL+55.0
55~74	1.4PWL-12.0
55未満	やり直し(例外規定可能)

米国における舗装の品質評価システム

PWL


FAA(米連邦航空局): Standards for Specifying Construction of Airports,

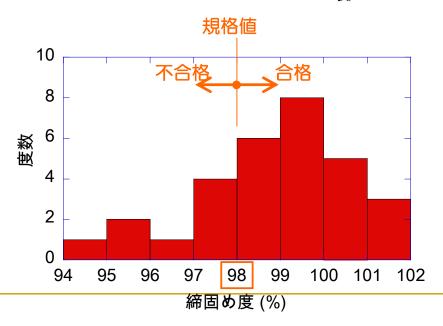
AC 150/5370-10E, 2009.

Percent Within	Positive Values of Q (Q _L and Q _U)								
Limits (P _L and P _U)	n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	
99	1.1541	1.4700	1.6714	1.8008	1.8888	1.9520	1.9994	2.036	
98	1.1524	1.4400	1.6016	1.6982	1.7612	1.8053	1.8379	1.863	
97	1.1496	1.4100	1.5427	1.6181	1.6661	1.6993	1.7235	1.742	
96	1.1456	1.3800	1.4897	1.5497	1.5871	1.6127	1.6313	1.645	
95	1.1405	1.3500	1.4407	1.4887	1.5181	1.5381	1.5525	1.563	
94	1.1342	1.3200	1.3946	1.4329	1.4561	1.4717	1.4829	1.491	
93	1.1269	1.2900	1.3508	1.3810	1.3991	1.4112	1.4199	1.426	
92	1.1184	1.2600	1.3088	1.3323	1.3461	1.3554	1.3620	1.367	
91	1.1089	1.2300	1.2683	1.2860	1.2964	1.3032	1.3081	1.311	
90	1.0982	1.2000	1.2290	1.2419	1.2492	1.2541	1.2576	1.260	
89	1.0864	1.1700	1.1909	1.1995	1.2043	1.2075	1.2098	1.211	
88	1.0736	1.1400	1.1537	1.1587	1.1613	1.1630	1.1643	1.165	
87	1.0597	1.1100	1.1173	1.1192	1.1199	1.1204	1.1208	1.121	
86	1.0448	1.0800	1.0817	1.0808	1.0800	1.0794	1.0791	1.078	
85	1.0288	1.0500	1.0467	1.0435	1.0413	1.0399	1.0389	1.038	
84	1.0119	1.0200	1.0124	1.0071	1.0037	1.0015	1.0000	0.999	
83	0.9939	0.9900	0.9785	0.9715	0.9671	0.9643	0.9624	0.961	
82	0.9749	0.9600	0.9452	0.9367	0.9315	0.9281	0.9258	0.924	
81	0.9550	0.9300	0.9123	0.9025	0.8966	0.8928	0.8901	0.888	
80	0.9342	0.9000	0.8799	0.8690	0.8625	0.8583	0.8554	0.853	
79	0.9124	0.8700	0.8478	0.8360	0.8291	0.8245	0.8214	0.819	
78	0.8897	0.8400	0.8160	0.8036	0.7962	0.7915	0.7882	0.785	
77	0.8662	0.8100	0.7846	0.7716	0.7640	0.7590	0.7556	0.753	
76	0.8417	0.7800	0.7535	0.7401	0.7322	0.7271	0.7236	0.721	
75	0.8165	0.7500	0.7226	0.7089	0.7009	0.6958	0.6922	0.689	
74	0.7904	0.7200	0.6921	0.6781	0.6701	0.6649	0.6613	0.658	
73	0.7636	0.6900	0.6617	0.6477	0.6396	0.6344	0.6308	0.628	
72	0.7360	0.6600	0.6316	0.6176	0.6095	0.6044	0.6008	0.598	
71	0.7077	0.6300	0.6016	0.5878	0.5798	0.5747	0.5712	0.568	
70	0.6787	0.6000	0.5719	0.5582	0.5504	0.5454	0.5419	0.539	
69	0.6490	0.5700	0.5423	0.5290	0.5213	0.5164	0.5130	0.510	
68	0.6187	0.5400	0.5129	0.4999	0.4924	0.4877	0.4844	0.482	
67	0.5878	0.5100	0.4836	0.4710	0.4638	0.4592	0.4560	0.453	
66	0.5563	0.4800	0.4545	0.4424	0.4355	0.4310	0.4280	0.425	
65	0.5242	0.4500	0.4255	0.4139	0.4073	0.4030	0.4001	0.398	

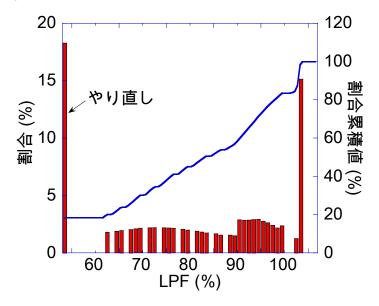
加熱アスファルト混合物の密度と疲労寿命

スティフネスの推定(マサチューセッツ大学)混合物のスティフネスは密度の増加に伴い増加する

加熱アスファルト混合物の密度と疲労寿命


■ 疲労破壊曲線

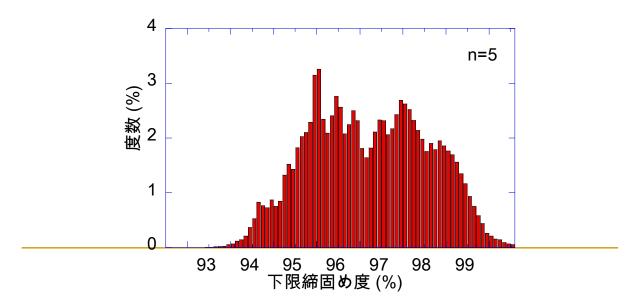
$$N_f = \alpha \times \left(\frac{1}{\varepsilon}\right)^{\beta} \times \left(\frac{1}{E}\right)^{\gamma}$$


 $N_f = 破壊に至るまでの破壊回数$ = アスファルト混合物に発生する引張ひずみE = アスファルト混合物の弾性係数、 、 は係数

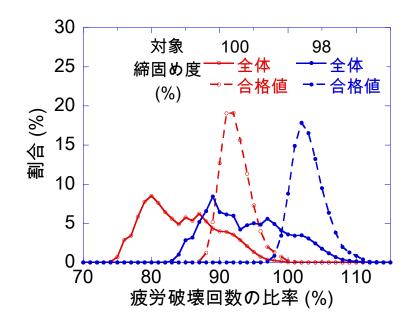
アスファルト舗装表層の密度の測定事例

コア(30個)の締固め度の度数 30個から5個を選び母集団をつくる $_{30}C_{5}$

LPF(当初の契約額に対する支払額の割合) の計算事例

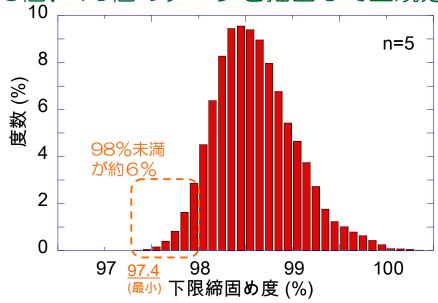


■ 締固め度の下限を98%としたLPFの割合

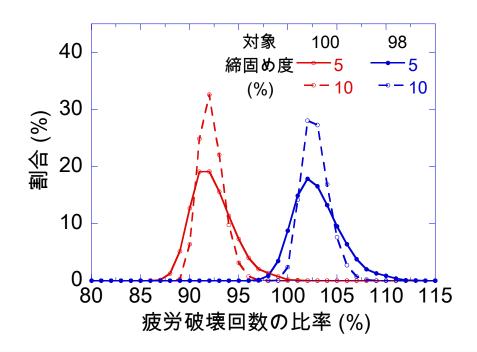

PWLアスファルト舗装表層の密度の測定事例

下限締固め度の度数の算出手順

- ①任意の5個のデータを抽出して正規分布を仮定
- ②全体の90%以上が含まれる値を下限締固め度
- ③任意の5個の組み合わせ(場合の数)₃₀C₅について行う



締固め度と疲労破壊回数



PWLアスファルト舗装表層の密度の測定事例

基準密度(98%)を満足する22個のデータから任意の5個、10個のデータを抽出して正規分布を仮定

サンプリング数による性能の違い

まとめ

アスファルト舗装表層の締固め度を取り上げて,施工性の定量化ついて検討した。得られた知見は以下の通り。

- ◆施工の優劣により舗装の性能が大きく変化することを、 混合物の密度、スティフネス、ひずみおよび疲労回数 を用いて定量的に表すことができる。
- ◆この定量化手法を用いることにより、現行の施工管理検査方法(締固め度の合格判定値、試験頻度)を照査することが出来る。