FAA Airport Pavement Working Group Meeting April 24-26, 2012

PRACTICAL AIRPORT PAVEMENT M&R MANAGEMENT

Y. Hachiya & M. Kanno Service Center of Port Engineering Tokyo, JAPAN

Contents

- Performance of Airport Pavements
 - > Structure
 - Safety
 - Surface Course Durability
- → APMS (M&R) in Japan
 - > Inspection & Maintenance
 - Evaluation
 - Rehabilitation

2

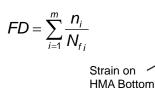
Airports in Japan International hub: 4 Major local: 24 Local: 54 Civil/military: 7 Other: 9

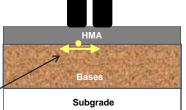
PERFORMANCE OF AIRPORT PAVEMENTS

Required Performance

- Structure
 - Subgrade & Bases (Bearing Capacity & Frost), HMA Fatigue & Rutting
- Safety
 - > Rutting, Surface Friction
- Surface Course Durability
 - Aging, Raveling, Debonding between Layers

5


7


Structure

- > Performance-Based Design Verification
 - > ex: Fatigue Cracking in HMA

$$\gamma_i \cdot FD_d / FD_{dl} \leq 1.0$$

- FD_d: Design Value of Fatigue Damage
- FD_{dl}: Limit Value of FDd
- γ_i : Importance Factor

Safety

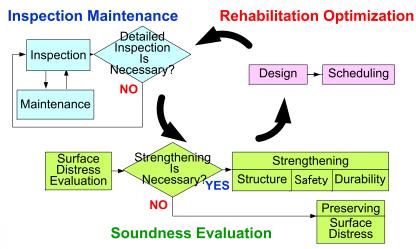
- Surface Friction
 - Coefficients of friction are periodically inspected

Grooving		Tire				
W	w/o	pressure				
0.55	0.45	Low				
0.45	0.4	High				

by Surface Friction Tester

- · Grooving is generally required
- Surface Configuration
 - Follows the ICAO Recommendations

Surface Course Durability


- Debonding between Layers
 - Materials are specified as follows;
 - Increase Aggregate Size
 - Use Polymer-Modified Asphalt
 - Secure Air Void 3% or more
 - Increase Single Lift Thickness to 80mm
 - Use Warm Mix Asphalt if necessary

AIRPORT PAVEMENT M&R MANAGEMENT SYSTEM IN JAPAN

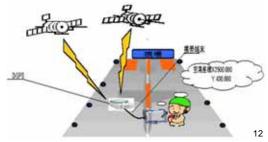
9

Airport Pavement M&R Management

10

INSPECTION AND MAINTENANCE PHASE

Pavement Inspection

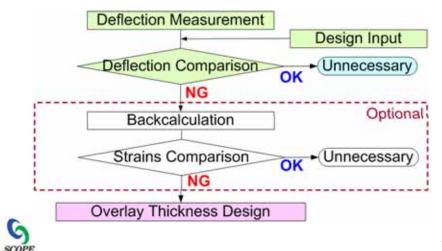

- Patrol
 - > Visually, on foot or slow-moving vehicle
- Emergent
 - Visually, after earthquake
- Detailed
 - When necessary, surface distress by measuring vehicle & structure by FWD, etc.
- Periodic
 - Surface distress and configuration

New Inspection Patrol System

- Mobile PC & Differential GPS
- Process
 - Identification
 - Evaluation and treatment
 - Description and photographing

SOUNDNESS EVALUATION PHASE

Surface Distress


- PRI (Pavement Rehabilitation Index)
 - PRI = 10 0.450CR 0.0511RD 0.655SV
 - CR: Crack Ratio, RD: Rut Depth, SV: Roughness
- The need for rehabilitation works
 - > A: unnecessary
 - B: in the near future (sub-classified into 3 cat.)
 - C: immediately

Facility	Α	В	С
Runway		3.8 – 8.0	< 3.8
Taxiway	6.9 <	3.0 - 6.9	< 3.0
Apron	5.9 <	0.0 - 5.9	< 0.0

15

SOUNDNESS EVALUATION PHASE

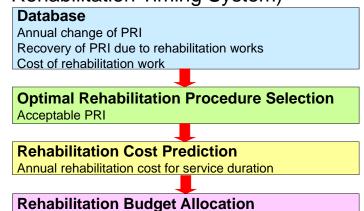
Structural Evaluation with FWD

Overlay Design

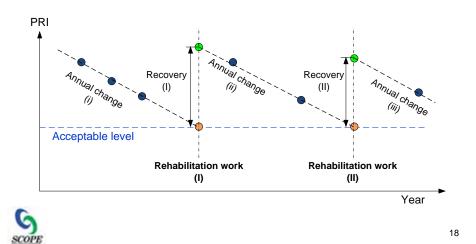
- Existing Pavement Evaluation
 - Experienced traffic volume, components & properties of existing pavement
- Design Conditions
 - Design period, loading conditions, climate, fatigue properties of new HMA
- Fatigue Analysis
 - > Strains of HMA, aircraft wandering
- Overlay Thickness Design

Design Example

- → Fatigue Damage (FD) of Existing HMA **Bottom Layer**
- Accumulated till the Present: 0.8
- → Added after Overlay: 0.204 0.142
- Summed: 1.004 0.942
- Overlay Thickness: 80mm


	Overlay Thickness (mm)	Accumulated FD	Added FD	Summed FD	Judgment
	70	0.8	0.204	1.004	NG
	80	0.8	0.171	0.971	OK
)	90	0.8	0.142	0.942	OK

REHABILITATION OPTIMIZATION PHASE


Rehab Work Scheduling

 AirPORTS (Airport Pavement Optimal Rehabilitation Timing System)



Annual rehabilitation budget smoothing

Annual Change & Recovery of PRI

Optimal Rehabilitation Schedule

Currently Conducting Studies

- Refining AirPORTS
 - Osaka & Nagasaki Airports were surveyed
 - Extending to Nationwide
- Simplified Rehab Needs Judgment
 - Utilizing Monthly Inspection Data
 - Applying to Local Airports
- Practical Performance Based Design
 - Developing Issues on Rutting, etc.

17