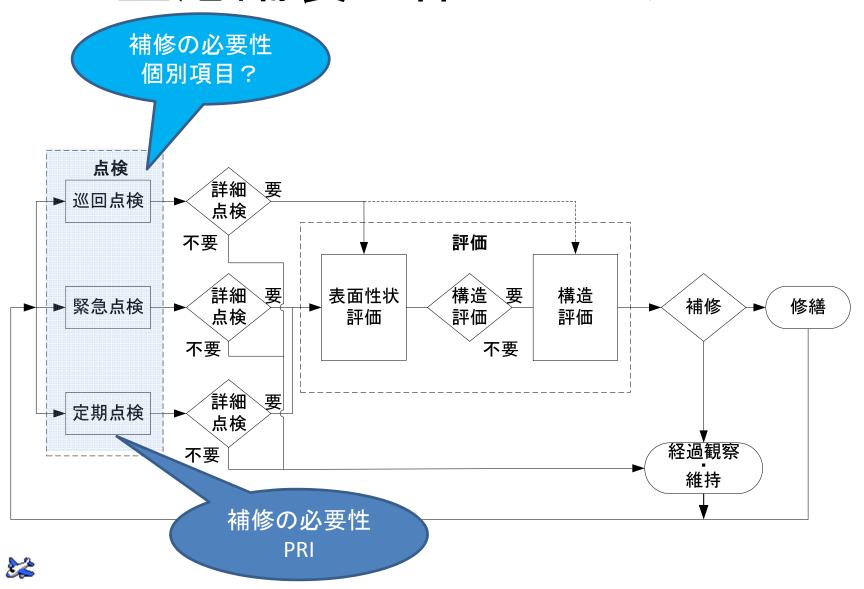
ひび割れ・PRI評価に基づく空港 舗装の補修必要性の判定

(財) 港湾空港建設技術サービスセンター

菅野 真弘 八谷 好高 北落謙太郎



概要

- ◇空港舗装の保全方法
 - •点検→評価→維持•経過観察→補修•改良
- ◇巡回点検
 - ・巡回点検データの有効活用
- ◇詳細点検・定期点検
 - PRIによる補修の必要性判定
- ◇巡回点検データによる補修必要性の簡易判定
 - ・巡回点検による簡易判定の可能性の検討
 - PRIと表面性状の個別状況の関係に基づく
 - ・九州地方の空港での測定結果を対象

空港舗装の保全システム

巡回点検

- 巡回点検方法
 - 徒歩でまたは車内から目視で実施
 - コンベックスルール、ポール、カメラ等を使用
 - 毎月(GW, 夏休み, 年末年始前は徒歩による)
- ・ 点検項目・異常の形態/記録

点検年月日	点検の有無(異常の有無)	点検種別	天候	点検記録者
平成24年9月5日	1:舗装(有、無) 2: 着陸帯(有、無) 3: のり面(有、無) 4:排水施設(有、無) 5:構造物(有、無)	巡回、 緊急	晴れ	空港 太郎

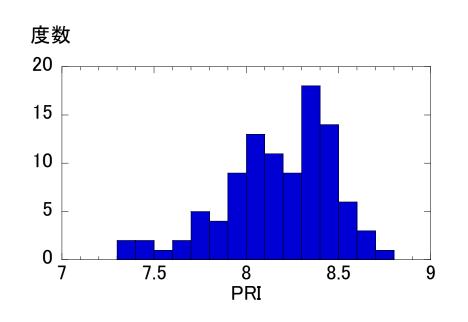
采 口.	番号 整理番号 施設名		封 臣.	異常箇所			上松吐の世里	
留万	登 生 留 万	旭 取石	記号	位置	形態	規模	点検時の措置	
1 1 1		A滑走路		測点 600m,	亀甲状ひび割れ	縦×横:	応急措置3/10夜予定.詳 如点於然見為に対像以	
1	1 A-1 A 滑走	A/有处的		右6m	単中小いい割れ	$1 \text{m} \times 0.5 \text{m}$	細点検後早急に補修必 要	
1 W1-1	W-1誘導 路 B	R	測点 1,700m,	線状ひび割れ	長さ×幅:	経過観察必要		
		左7m		2m×2mm	性週既尔少女			

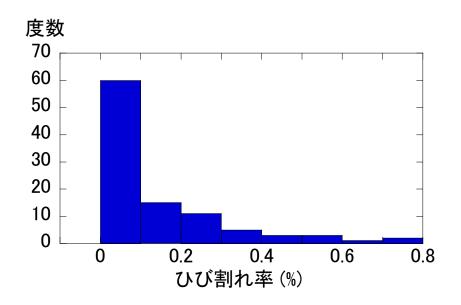
表面性状と補修必要性(滑走路)

表面性状	評価*						
	Α	B1	B2	В3	C		
PRI	8.0以上	6.6以上 8.0未満	5.2以上 6.6未満	3.8以上 5.2未満	3.8未満		
ひび割れ率 (%)	0.1未満	0.1以上 2.2未満	2.2以上 4.4未満	4.4以上 6.5未満	6.5以上		
わだち掘れ (mm)	10未満	10以上 19未満	19以上 29未満	29以上 38未満	38以上		
平坦性 (mm)	0.26未満	0.26以上 1.39未満	1.39以上 2.51未満	2.51以上 3.64未満	3.64以上		

* 補修の必要性: A-必要なし

B-近いうちに望ましい

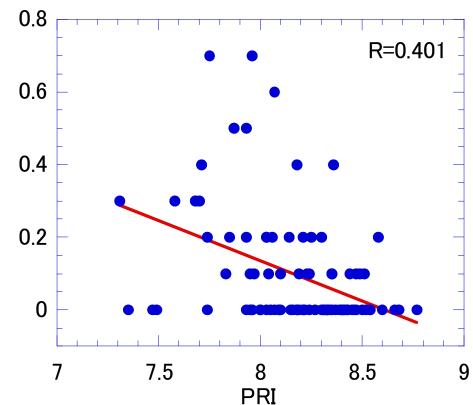

C-できるだけ早急に必要


☆PRI(舗装補修指数):Pavement Rehabilitation Index
→PRI=10-0.450×ひび割れ率-0.0511×わだち掘れ-0.655×平坦性

表面性状の状況

(同じユニットによる評価別度数)

PRIとひび割れの状況


(ユニット単位:幅21m・長さ30m)

(ユニット数:100ユニット)

PRIとひび割れ率

ひび割れ率(%)

【相関性の低さ要因】

ひび割れが発生していないユニットが多い →両者の相関係数は小さい

【参考】

- ・PRIとわだち掘れ相 関係数:0.338
- ・PRIと平坦性 相関係数:0.814 (ただし巡回点検時 に平坦性のデータを 定量的に収集するの は困難であるので、 今回の考察から除く)

補修必要性の違い(ユニット数)

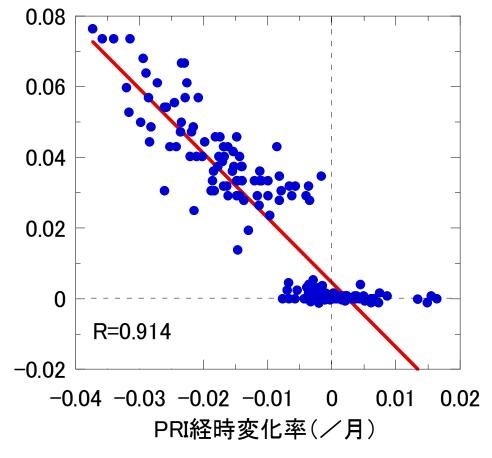
PRI	ひび割れ				
	A	B1	B2	В3	
A	52	23	0	0	
B1	8	17	0	0	
B2	0	0	0	0	

PRI	わだち掘れ				
	A	B1	B2	В3	
A	5	67	3	0	
B1	1	18	6	0	
B2	0	0	0	0	

	平坦性					
PRI	A	B1	B2	В3		
A	0	33	42	0		
B1	0	0	21	4		
B2	0	0	0	0		

PRI~ひび割れ:

おおむね合致


PRI~わだち掘れ•平坦性:

単項目評価がPR評価より厳しい

PRIとひび割れ率の経時変化率

ひび割れ率経時変化率(%/月)

【参考】

・PRIとわだち掘れ 相関係数:0.022

•PRIと平坦性

相関係数:0.174

☆相関係数が0.9程度

→ひび割れ率に基づく簡易補修判定やPRIの概略予測の可能性

まとめ

- PRIと巡回点検による個別(ひび割れ)評価の関係
 - 両者に基づく補修判定結果がおおむね合致: P-8
 - 両者の経時変化率の間の相関関係が高い: P-9

- ・ 巡回点検結果から補修必要性の判定
 - ・ 巡回点検等の日常点検結果を利用した簡易な判定評価 方法の可能性あり
 - 補修必要性・最適補修時期の簡易推測方法の可能性あり

ご清聴ありがとうございました

http://www.scopenet.or.jp/main/

