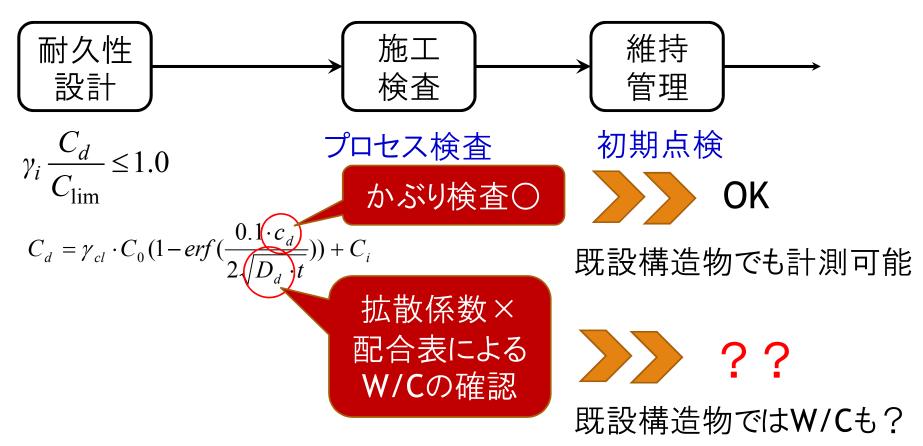
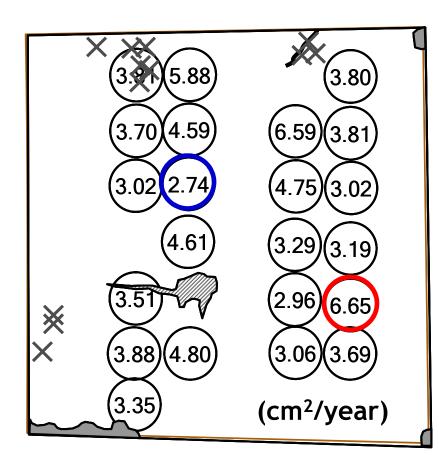


平成26年度 第14-1号


塩害劣化を受けるRC構造物の耐久性設計と維持管理の連係

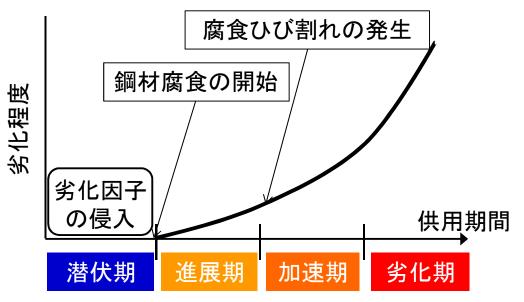
東京理科大学理工学部土木工学科 准教授 加藤佳孝

背景と目的


塩害を受けるRC構造物

新設と補修の統一的設計手法 現場計測と設計体系の連係に基づくシームレス化

桟橋床板の 拡散係数の測定結果


品質のばらつき 劣化進行のばらつき

計測するしかない!

4th USMCA (2005, Dr. E. Kato, PARI)

RCの耐久性設計と維持管理(塩害)

村腐食速度の 体系的整理 ^{ち田}

各種要因と鋼

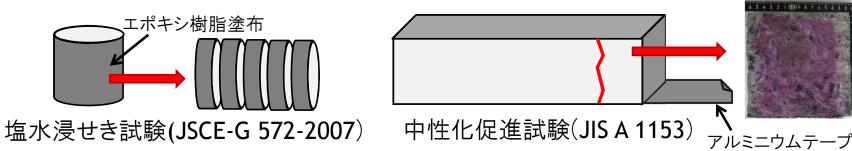
現場計測手法を活用したかぶりの品質評価

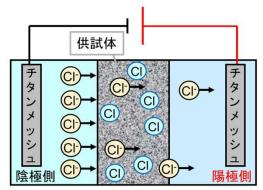
既存構造物の実情 腐食した構造物の維持管理

実務としては、腐食速度の予測が必要

現場計測手法を活用した耐久性設計と維持管理の連係

現場計測手法を活用したかぶりコンクリートの品質評価

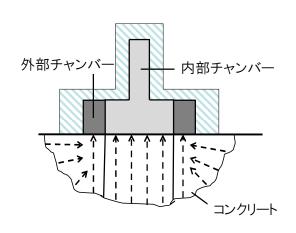

非破壞計測 VS 耐久性指標


配合 OPC(W/C=40, 50, 60%)

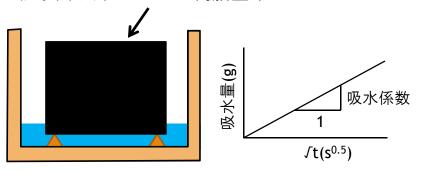
BB(置換率=30, 45, 60%, W/B=40, 50, 60%)

養生 水中養生(20°C), 封かん養生, 気中養生(20°C, R.H.60%)

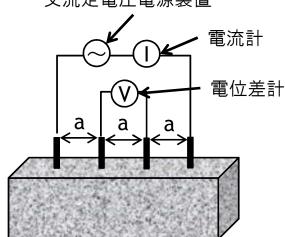
を各28日間



電気泳動試験(JSCE-G 571-2003)


現場計測手法を活用したかぶりコンクリートの品質評価

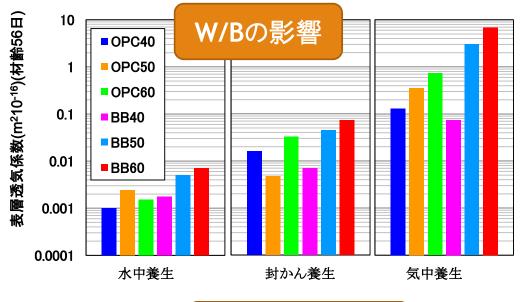
非破壊計測項目


表面透気試験

吸水面以外をエポキシ樹脂塗布

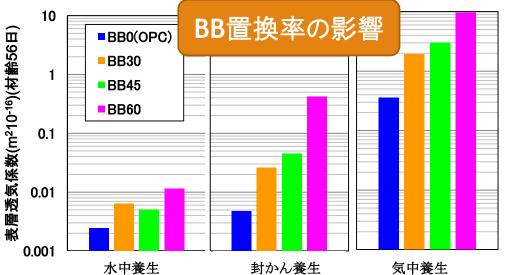
吸水試験

交流定電圧電源装置


$$\rho = 2\pi \cdot a \cdot \frac{V}{I}$$

四電極法(4プローブ法)

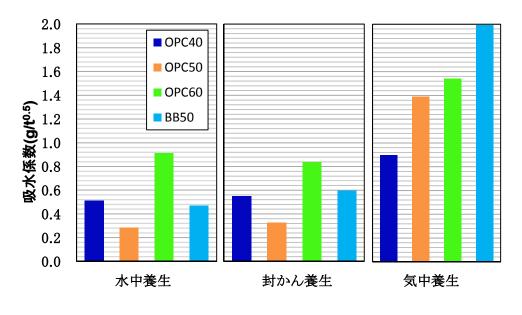
4プローブ法と電気泳動試験の結果では、養生の差が確認されなかったため、水中養生の結果を示す.



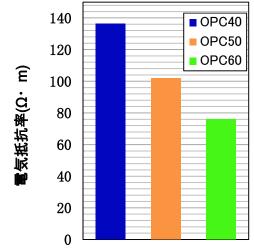
表層透気係数

水中, 封かん, 気中の順に表層透気係数が増加

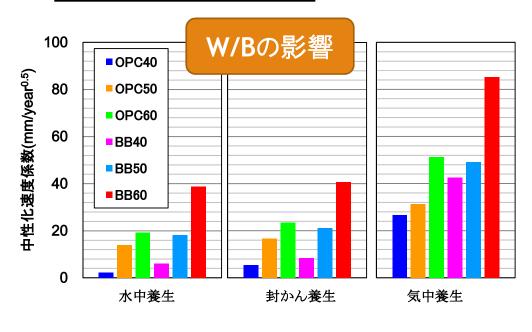
→水分が多いほど品質向上

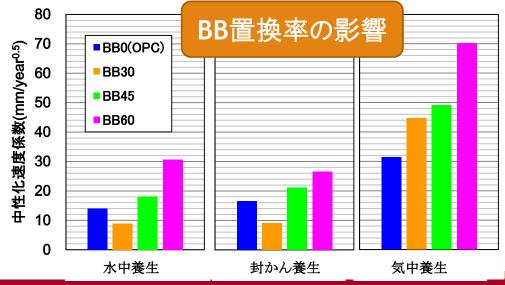


W/Bの増加 BB置換率の増加


→表層透気係数増加

吸水係数, 電気抵抗率

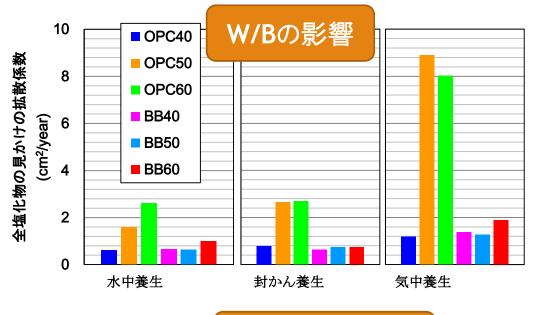

- ・水中と封かんは概ね同程度
- ・気中は吸水係数が増大



- ·W/Bの低下
- → 電気抵抗率増加 (養生の影響は評価できなかった)

中性化速度係数

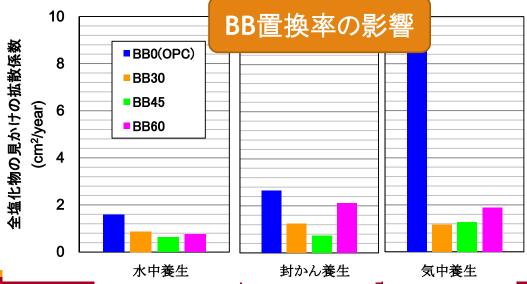
水中, 封かん, 気中の順に中性化速度係数が増加


→表層透気係数と同様

W/Bの増加 BB置換率の増加 →中性化速度係数増加

→表層透気係数と同様

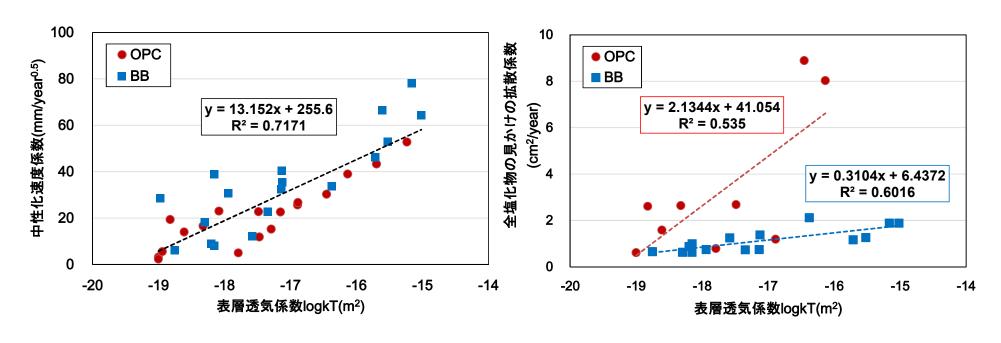
見かけの拡散係数(浸せき試験より)



水中, 封かん, 気中の順に見かけの拡散係数が増加

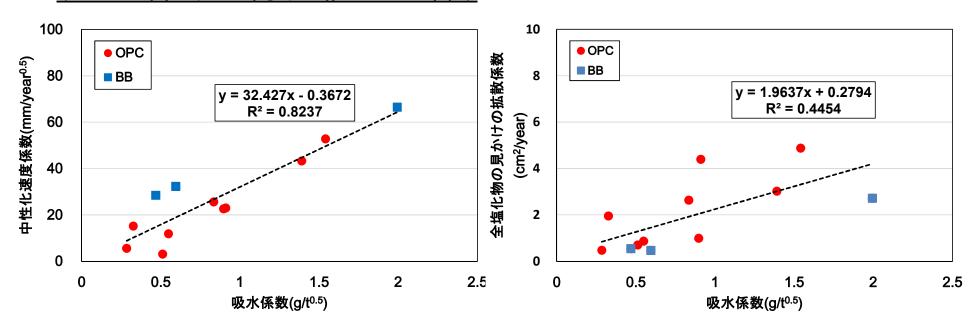
→表層透気係数と同様

W/Bの増加


- →見かけの拡散係数が増加
- →表層透気係数と同様

ただし、置換率45%までは、 置換率の増加に伴い見かけ の拡散係数は低下

→ BBの高い塩分固定化能 による


<u>現場計測結果と特性値の関係</u> (表層透気係数と特性値の関係)

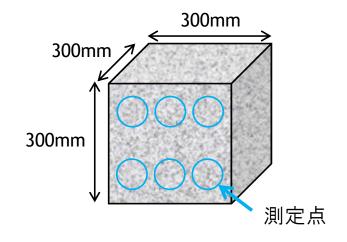
- ・表層透気係数の増加に伴い中性化速度係数は増加
- ・セメント種類や養生,水結合材比に関わらず高い相関性
- ・表層透気係数の増加に伴い見かけの拡散係数は増加
- ・セメント種類によって見かけの拡散係数の増加程度は異なる

<u>現場計測結果と特性値の関係</u> (吸水係数と特性値の関係)

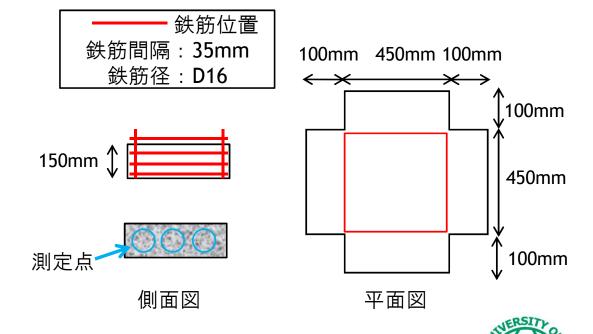
- ・吸水係数の増加に伴い中性化速度係数は増加 (データ数が少ないため継続検討)
- ・吸水係数の増加に伴い見かけの拡散係数は増加
- ・相関性は低い結果となった.

施工の影響が大きい状態の検討

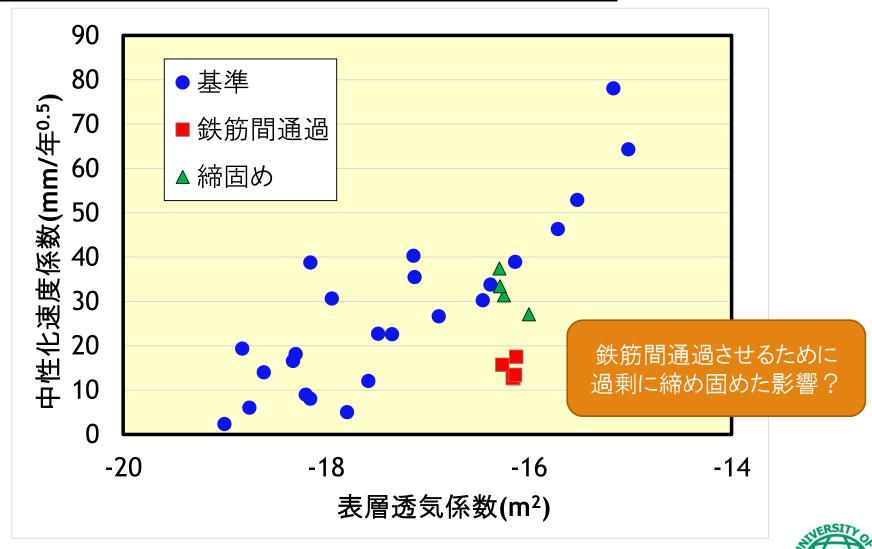
·配合:W/C=50%(締固めの検討, 打重ねの検討)


W/C=40, 50, 60%(鉄筋間通過の検討)

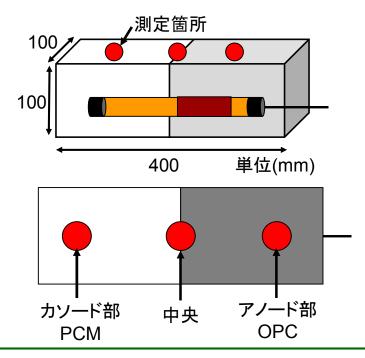
·養生: 湿布養生(20°C, R.H.60%)を28日間


(表面透気試験は, 乾燥期間として養生後14日間気中環境に静置)

○締固めの検討


締固め時間:0(突棒), 15, 30s

○鉄筋間通過の検討



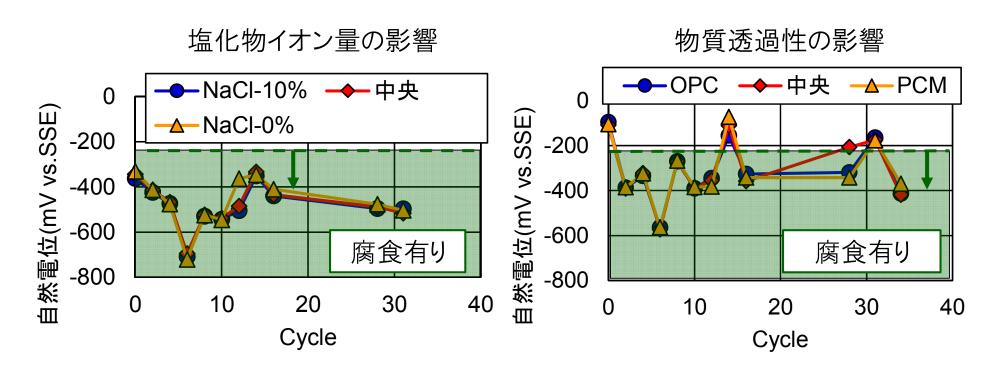
施工が表層品質に及ぼす影響の検討 (表層透気係数と中性化速度係数の関係)

コンクリート中の不均質性がマクロセル腐食機構に及ぼす影響

試験体概要および測定項目

- ·試験体寸法:10×10×40cm
- •OPC, W/B=60%
- ·初期塩分:0,10%
- ·かぶり:20mm(一部に20~90mm)
- ·養生:水中14日間

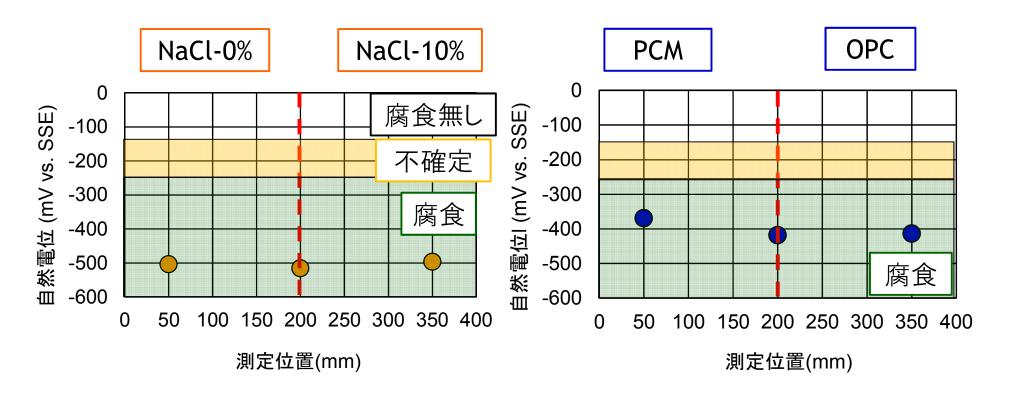
(塩分練り混みは同濃度の塩水)


※影響の大きい赤字の組合わせに注目

水準	領域1	領域2			
<u> </u>	NaCl0%	P. C.			
環境		NaCl10%			
7717 30	NaCl3%				
かぶり	20~9	90mm			
	W/C=40%	W/C=60%			
配合	W/C=50%				
	OPC	BB			
	OPC	PCM			
 補修	Li				
作用证	Na	無塗布			
	シラン				

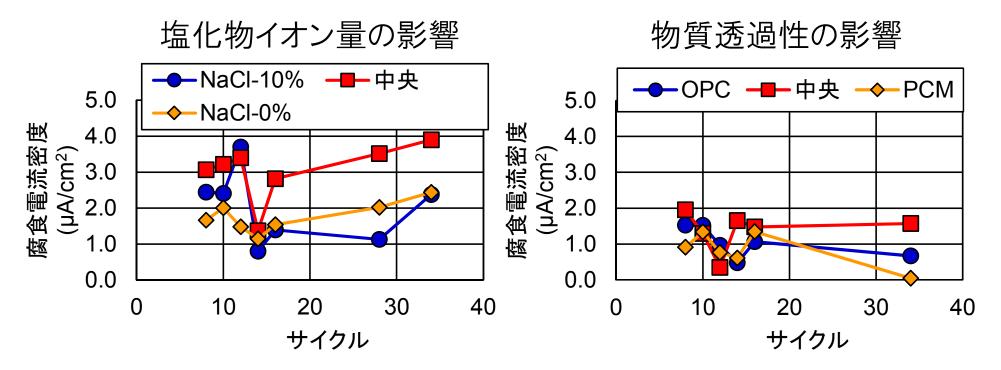
- ·乾湿繰り返し,連続浸せき (4日気中乾燥,3日塩水浸せき)
- ·自然電位,分極曲線(照合電極SSE, 掃引速度60mV/min)
- ・全塩化物イオン濃度(乾湿70日)
- $\rightarrow C_0$, D_{ap} を用いて,浸透を予測

自然電位の測定結果(経時変化)


緑色の領域: 腐食あり(ASTM C 876-91)

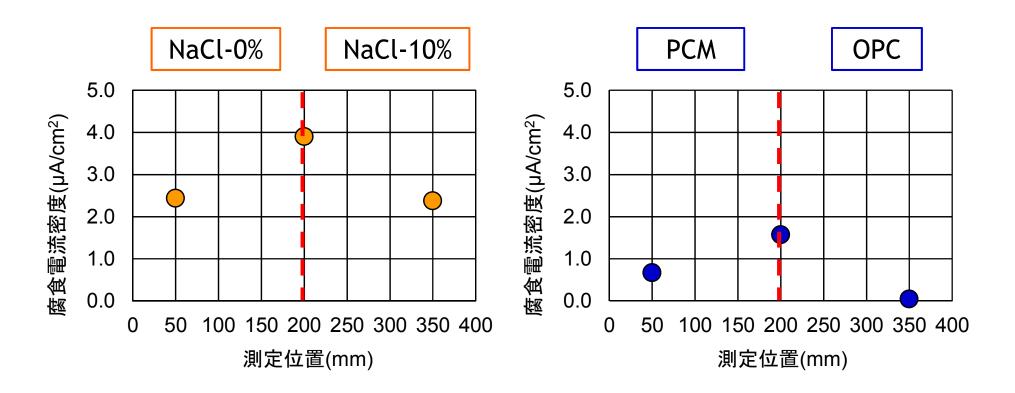
- ・乾湿初期から、腐食有りの領域で推移
- ASTMの基準から、90%以上の確率で鋼材腐食が発生

測定位置毎の自然電位の測定結果(32サイクル)

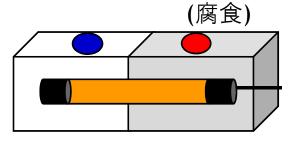


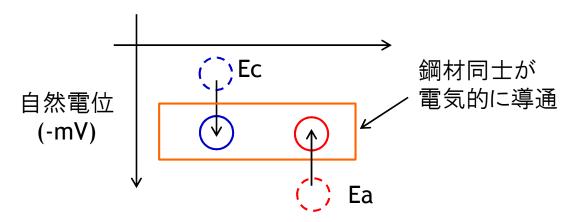
- ・測定位置によらず、同程度の自然電位
- →塩化物イオン量の差によらず, 鋼材腐食と考えられる

腐食電流密度の測定結果(経時変化)

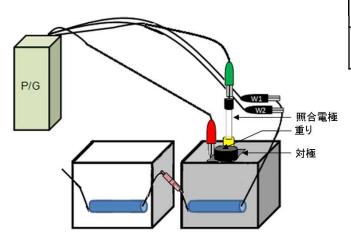

:分極曲線の測定から

- ・腐食電流密度は、中央部で大きい
- ・OPCとPCMの組合わせの腐食電流密度が小さい
- →PCMの比抵抗が大きく, 電圧降下の影響が大きい


測定位置毎の腐食電流密度の測定結果(32サイクル)

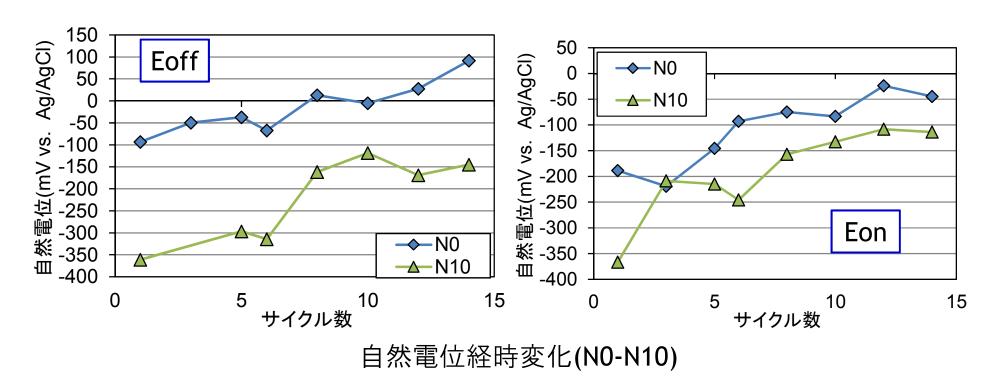


- ・中央部で腐食電流密度が大きい
- →塩化物イオン量や物質透過性などの不均質性により, 局部的な鋼材腐食が生じていると考えられる


電気的導通が自然電位の測定結果に与える影響の考察

Ec:貴な電位 Ea:卑な電位

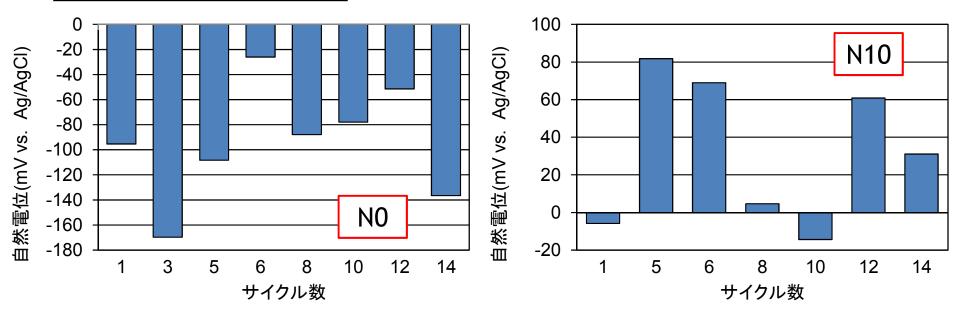
- ・鋼材同士の電気的な導通
- →自然電位は変化(分極)する



検討項目	略記	カソード部	アノード部		
NaCl	N0-N10	OPC-0%	OPC-10%		

- ・電気的導通による、分極の影響を把握
 - ○測定項目
 - ·自然電位(導通時:Eon, 切断時:Eoff)

自然電位の変化



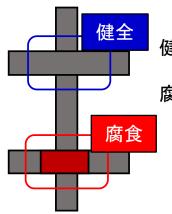
・サイクル初期の E_{off} はN0が-90mV, N10は-370mV. E_{on} はN0が-190mV, N10は-370mV.

→サイクルの経過とともに貴な電位に推移.

自然電位の変化量

自然電位の変化量(N0-N10)

- アノード部のN10はN0-N10で-20~80mV程度の貴な電位
- カソード部のN0は-100mV程度の卑な電位
- →短絡により分極された.


アノード部は $20\sim60$ mVの貴な電位,

カソード部は-100~-160mVの卑な電位

自然電位は、腐食部、非 腐食部を含めた平均的 な値となりやすい

まとめ:実構造物での評価方法(腐食部と健全部が接続)

健全: 電位-350mV vs. SSE 塩化物イオン量0.5kg/m³ 腐食: 電位-500mV vs. SSE

「良・电位-500mV vs. 55c 塩化物イオン量3.8kg/m³ 腐食部がマクロアノード, 健全部がマクロカソード →マクロカソードは卑な電位

STEP1 自然電位計測(電位マップで卑な箇所が腐食可能性)

STEP2 表層透気係数の測定→見かけの拡散係数を推定

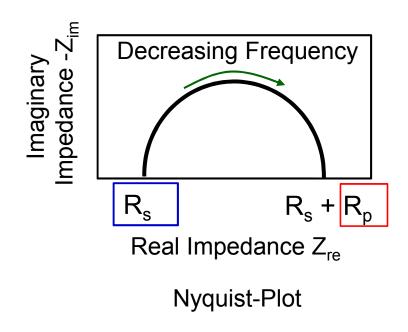
表面付近のみ塩化物量を測定

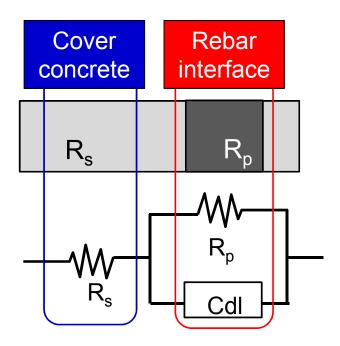
- →鋼材位置の塩化物量を予測
- →腐食部と健全部の位置を把握

現場計測が難しい・・・ 現場適用されている 交流インピーダンス法?

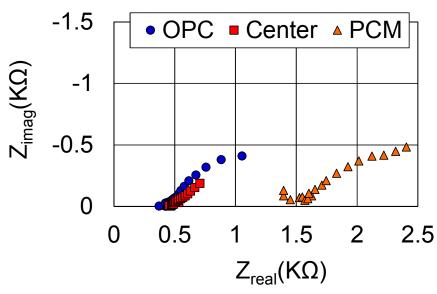
STEP3 予測した腐食可能性の箇所の分極曲線測定

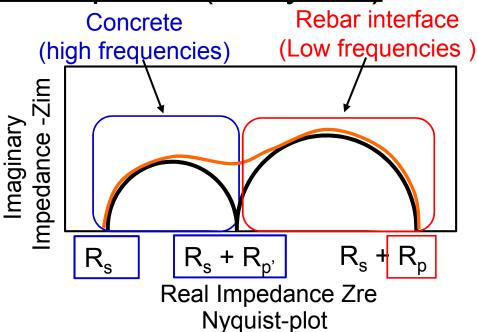
→腐食速度を求める

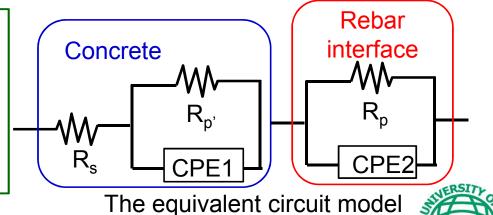

腐食速度を指標に,今後の点検箇所を選定

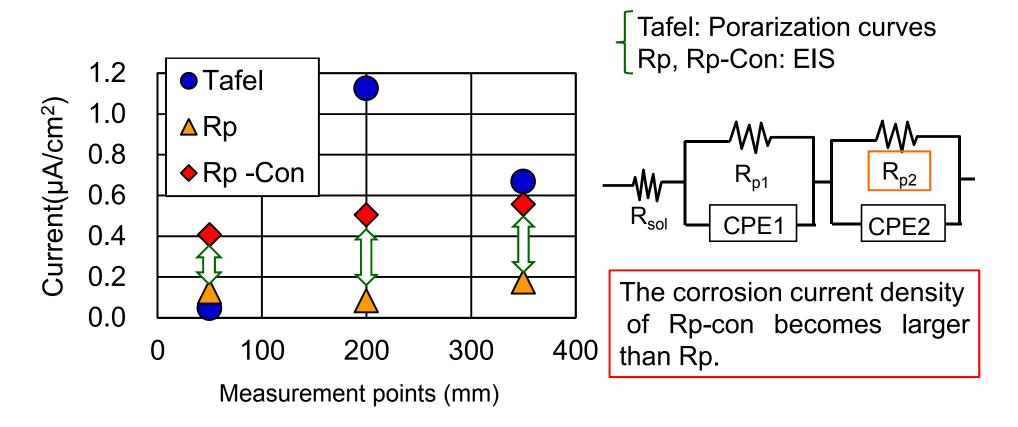


ご静聴ありがとうございました


The equivalent circuit model for RC and the Nyquist-plot

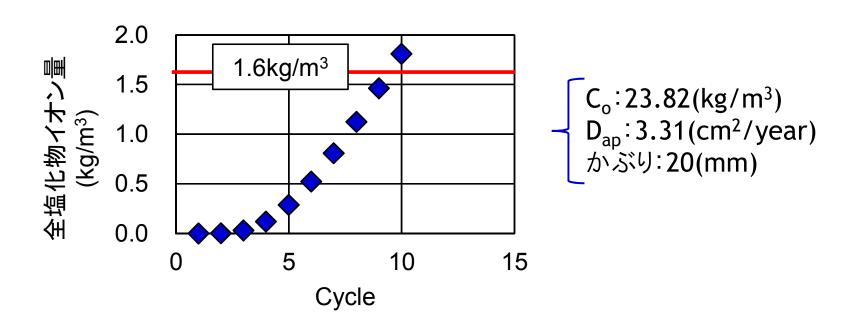

- In general, impedance spectroscopy of rebar in concrete becomes one semicircle.
- The solution resistance (Rs) accounts for the ionic conduction in the electrolyte filling the pores of cover concrete.
- The other elements refer to the double layer capacitance at the rebar/concrete interface (CdI) and the charge transfer resistance (Rp


The result of the impedance spectroscopy at the locations of measurement points (32 cycles)


The impedance spectroscopy

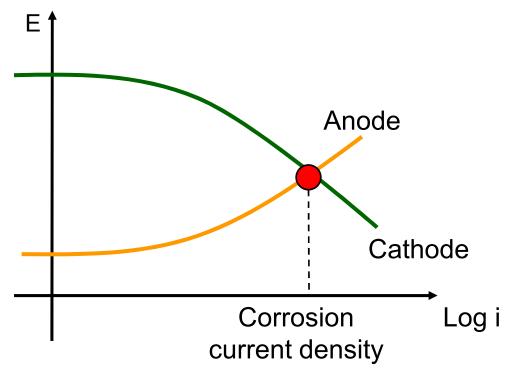
- The measurement result did not show one semicircle.
- The semicircle at high frequencies and a second semicircle associated to the steel corrosion process at low frequencies.

The corrosion current density at each point(32cycles)



- The current difference in measurement points like the Tafel case could not be observed.
- It was difficult to judge the tendency of localized corrosion at the joint and its surroundings based on the measurement result by EIS.

付録


腐食発生限界塩化物イオン量(Fickの拡散方程式の理論解)

・OPC試験体のかぶり20mm位置の鋼材は, 乾湿繰返し10サイクル以降で腐食発生限界塩化物イオン量を超えている. →10サイクル以降で,鋼材腐食が発生している可能性有り

Corrosion current density -calculate using this equation

$$\eta = b \log i + a$$

η: Overvoltage (mV),

i: Current density (µA/cm²),

a, b: Fixed number peculiar to an electrode reaction, (mV) (mV/decade)

The relationship between

- electric current and Voltage The coefficients in equation were calculated using the measurement results.
 - The corrosion current can be obtained from the point of intersection of the two lines.

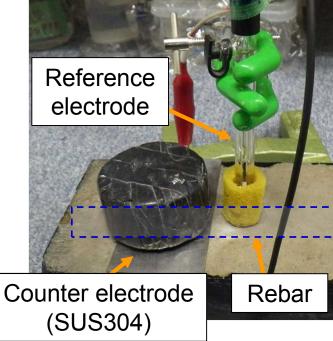
The steel corrosion rate can be calculated from the Stern-Geary equation

 The corrosion current density for rebar can be calculated by

$$I = K/R_p$$

I: Corrosion current density(µA/cm²)

= Corrosion rate


K: The proportionality constant

The active state(corrosion)→26(mV/decade)

The passive state (No corrosion) → K=52(mV/decade)

 R_p :The charge transfer resistance (Ω)

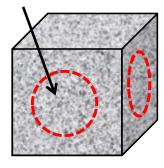
 R_p can be measured by using EIS.

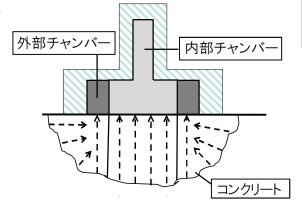
The measurement system of electrochemical impedance spectroscopy (EIS)

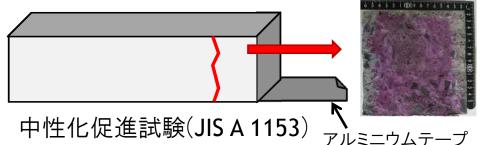
現場計測手法を活用したかぶりコンクリートの品質評価 非破壊計測手法を用いた特性値の予測

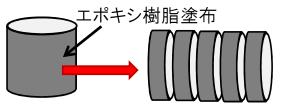
コンクリート構造物の劣化進行の程度は,同時期かつ同一配合で打設された コンクリートでも部材位置によるばらつきが多いと報告されている.

適切な劣化予測を行うためには、原位置かつ非破壊計測によって 特性値を把握できることが望ましい


しかし、現状での施工後の品質管理は、供試体の圧縮強度やひび割れの有無で評価され、耐久性を評価されていない


かぶりコンクリートの品質を評価できる非破壊計測を用いた特性値の予測


試験体概要および測定項目(養生や配合の検討:2013年度)


4側面の相乗平均値

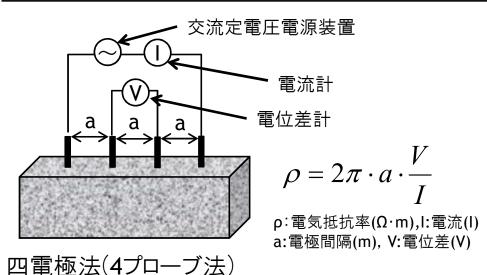
表面透気試験(ダブルチャンバー法)

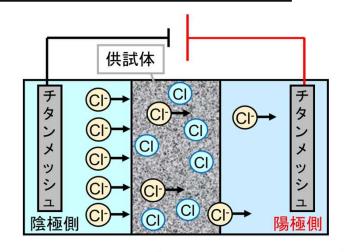
塩水浸せき試験(JSCE-G 572-2007)

·配合:OPC(W/C=40, 50, 60%),

BB(置換率=30, 45, 60%, W/B=40, 50, 60%)

·試験体寸法:150×150×150mm(表面透気試験:ダブルチャンバー法)


100×100×400mm(中性化促進試験: JIS A 1153)


φ100×100mm(塩水浸せき試験: JSCE-G 572-2007)

·養生:水中養生(20°C), 封かん養生, 気中養生(20°C, R.H.60%)を各28日間 (表面透気試験は, 乾燥期間として養生後28日間気中環境に静置)

試験体概要および測定項目(養生や配合の検討:2014年度)

電気泳動試験(JSCE-G 571-2003)

·配合:OPC(W/C=40, 50, 60%), BB(置換率=45%, W/B=50%)

·試験体寸法:150×150×150mm(表面透気試験, 四電極法:4プローブ法)

100×100×400mm(中性化促進試験)

100×100×85mm(吸水試験:ASTM C 1585-04)

φ100×50mm(電気泳動試験: JSCE-G 571-2003)

·養生:水中養生(20℃), 封かん養生, 気中養生(20℃, R.H.60%)を各28日間

(表面透気試験は, 乾燥期間として養生後28日間気中環境に静置)

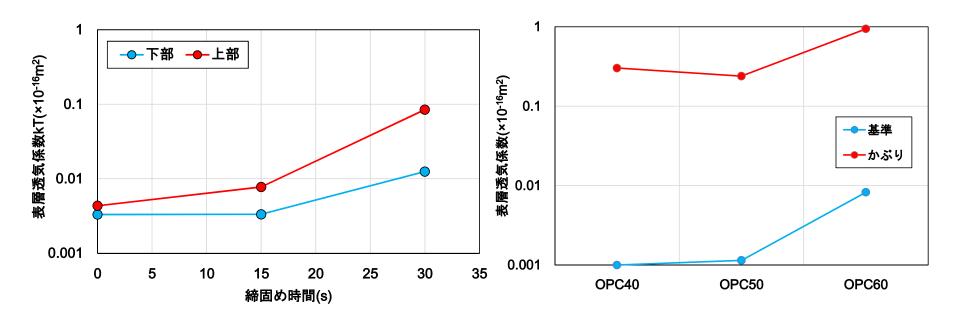
4プローブ法と電気泳動試験の結果では、養生の差が確認されなかったため 水中養生の結果を示す.

養生や配合の検討:2013年度配合表

Gmax	Air	SL (cm)	W/	s/a		単位	量(kg	単位量(g/m³)					
	,			B (%)	(%)	W	U	F	S	F	A ₁	A ₂	A_3
			40			413		783	986	2.6	125		
			50	50 60		330		806	1015	6.6		135	
20 4.			60		165	275		890	994	5.5	275		
	4 5	10.0	50	45		231	99	851	1072	4.6		50	
	4.5	10.0	10.0	40	45	100	227	186	853	7074	3.3		60
			50 60			182	149	870	1095	3.6		62.5	
					151	124	882	1110	3.3		100		
			50			132	198	889	1119	2.6		92.5	

養生や配合の検討:2014年度配合表

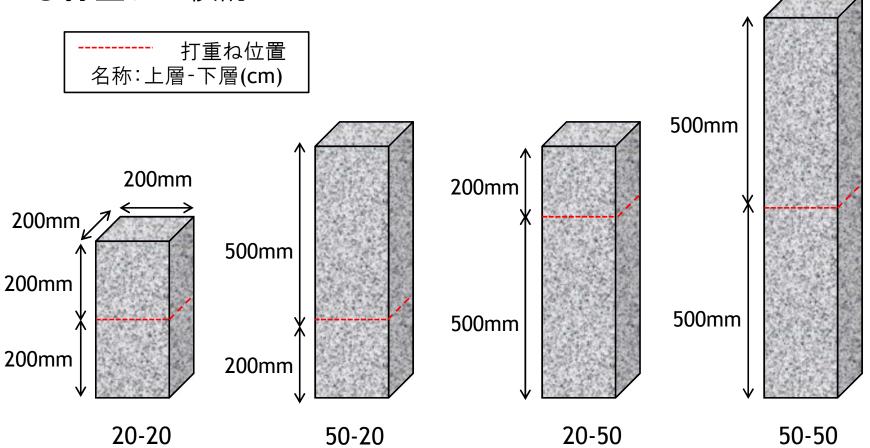
Gmax	Air		W/B (%)	s/a (%)	単位量(kg/m³)					単位量 (g/m³)		
(mm)	(mm) (%) (cm)	(cm)			W	С	F	S	F	A_1	A_2	
20 4.5		4.5 10.0	40			413		771	986	2.07	0.99	
	1 5		10.0	50	45	165	330) /	802	1025	0.56	0.66
	4.5		60	45	103	275		822	1051	1.1	3.3	
			50			182	149	779	1022	1.99	0.53	


F: 高炉セメント, A₁: AE剤, A₂: AE減水剤, A₃: 高性能AE減水剤 §

施工の影響が大きい状態の検討:配合表

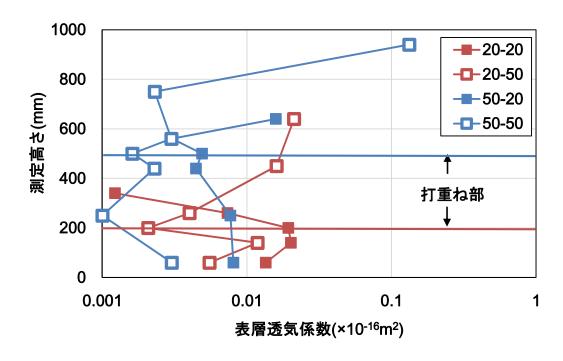
Gmax	Air												W/C	s/a		単位	ī量(kṭ	g/m³)			立量 m³)
(mm) (%) (cr	(cm)	(%)	(%)	W	С	F	S	F	A_1	A_2											
			40			413		771	986	2.07	0.99										
20	4.5	10.0	50	45	165	330		802	1025	0.56	0.66										
			60			275		822	1051	1.1	3.3										

締固め時間と鉄筋間通過の影響


・締固め時間の増加→表層透気係数 増加下部より上部の方が顕著

これは、締固め時間の増加に伴い材料分離が進行したことによる

表層透気係数が増加



○打重ねの検討

打重ね処理として、下層から生じたブリーディング水を排除した. 上層を打設する際は、下層の上端5cm程度も同時に締固めを行った. また、上層の打設は下層を打設してから1時間以内に行った.

施工が表層品質に及ぼす影響の検討 (測定高さと表層透気係数の関係)

- ・全体的にバラツキは大きいが、200-200を除けば上層の表層透気係数は増加しており、また水セメント比50%の場合も40%と同様に上層が500mmの場合、下層の表層透気係数は小さいことが確認できる。
- ・打重ね部での品質低下は確認されなかった.

