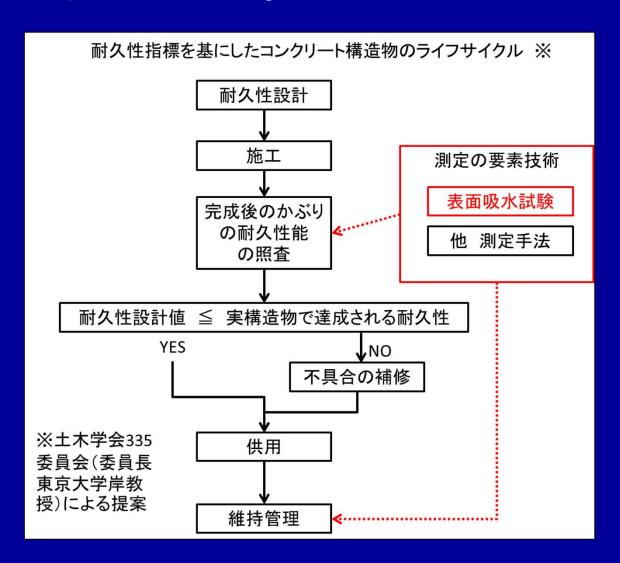
2014年度 港湾空港総合技術センター 研究助成 報告会

#### 桟橋下面コンクリートのかぶり品質の 非破壊評価方法の開発

2015年7月8日 香川高等専門学校 林 和彦


#### 本研究の目的

- コンクリート構造物のかぶりの品質を非破壊で測定し、品質判定をする。
  - コンクリートの緻密性の評価
  - 塩化物イオン拡散係数を非破壊で把握したい
- 表面吸水試験を、桟橋等の構造物下面に適用するための方法を開発する。





# 開発成果の反映方法

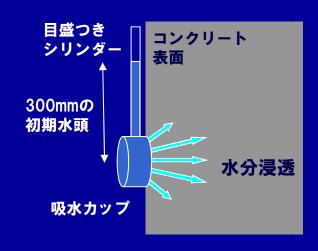


#### 改良前の現行の表面吸水試験

- コンクリート構造物のかぶりの品質を非破壊で測定する
  - 有害物質の移動しにくさ(物質移動抵抗性)
    - 気体:酸素、二酸化炭素
    - 液体:水
    - イオン:塩化物イオン など
- その他の非破壊試験手法
  - 空気:表層透気試験(トレント法, シングルチャンバー法 他)
  - 水: Initial Water Absorption Test (ISAT, BS1881)→原理のみ提唱 (製品化されているものがあるが評価方法が不十分)
  - 超音波:透過法、表面法(土研法)→物質移動との関係低
  - 微破壊手法(ドリル削孔等)は幾つかあるが、竣工検査では完全非 破壊のニーズが高く、使えない

### 水かけ試験




粗なコンクリート 瞬時に水を吸い、垂れない



密なコンクリート 水を吸いにくく、表面を流れる

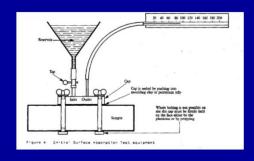
技術者のジャッジを定量化したい

#### 原理•優位性



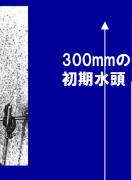
離れた位置から水漏れ

- 1. 水を作用させていること。 塩害, ASR, 凍害, 中性化など, コンクリートの 劣化は水の動きと関係。
- 2. 透水現象と吸水現象が同時に生じているが、圧力は小さいため吸水現象が支配的。 初期水頭300mmは、激しい降雨時にスラブに作用する圧力よりも大きい程度(ただし壁面への降雨圧力はもっと小さい)。(→組織を壊さない)
- 3. 目視で水漏れを確認できる。
- 4. 微細ひび割れも含めた評価。
- 5. 10分間の測定では、水の作用する深さはコンクリートの品質にもよるが最大で10-15mm程度。鉄筋までのかぶり全体でなく、施工の影響を受けやすい表層を評価している。


# コンクリート構造物の劣化と水






#### 表面吸水試験の開発経緯

既往の手法 1960年代~ BS1881 Initial Surface Absorption Test (ISAT) 著者ら横浜国大の方法 Surface Water Absorption Test (SWAT)





- ・水頭が一定
- ・試験室レベルの測定実績が豊富
- •現場では非破壊の手法が確立されていない
- ・光学センサによる自動化もあるが煩雑

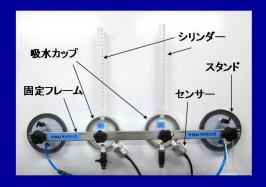


・: 読用 ・:るい

- Porositester
- ・真空ポンプによる非破壊固定
- 直径の影響
- ・注入時間の規定、評価手法なし

- ・真空パッドで反力を取り、 押し付けて固定(既往技 術の応用)
- ・水量を,水面の変化で 読み取る(既往技術の応 用)
- ・水頭が試験中に減少する特徴がある→影響のないことを確認
- ・目視読取りおよび 水圧センサー自動計測 →水圧が変化することを 逆手に利用




# 設置手法と適用部材



吸水カップの固定・測定時全景



カップ下面からの水の注入



鉛直面(壁面,桁側面)



水平面上部(スラブ面)



円筒面(電柱)

# 現場での測定状況





足場での測定

PC箱桁内部

# 床版上面への適用

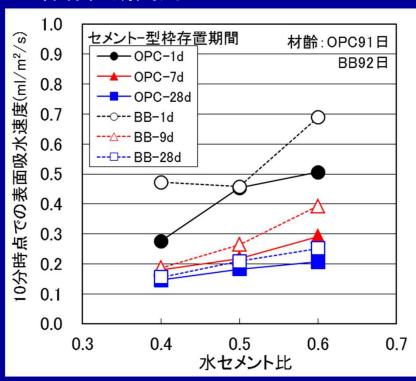


# 表面の凹凸への対応

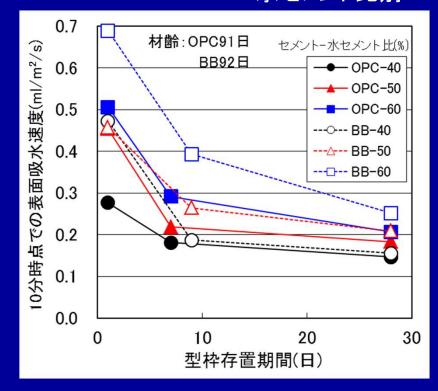


経年30年 屋外壁 モルタル溶脱(粗骨材露出) ※表面の包絡面は凸凹




貯水タンク 壁面ペーストが溶脱(細骨材残)※水流なしのため表面の包絡面はフラット

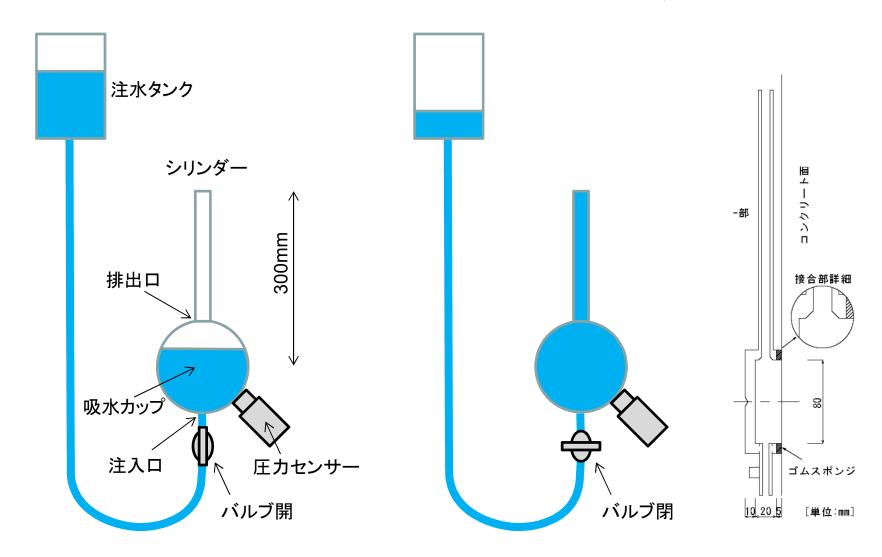
#### 既存の方法でできること


- 1) 完全非破壊の『表面吸水試験』を用いると、10分間 の測定で、
  - コンクリートの施工の良否
  - 水セメント比
  - 養生日数
  - 膨張材の効果
  - 内部拘束・外部拘束による微細損傷
  - 高炉セメントコンクリートのマスコン微細損傷
  - 表面含浸材の塗布効果
  - を同定・検知できる。
- 2)表面吸水速度は正規分布に従い, 統計的手法で 品質の評価が可能

# 養生と水セメント比の感度

#### 型枠存置期間別

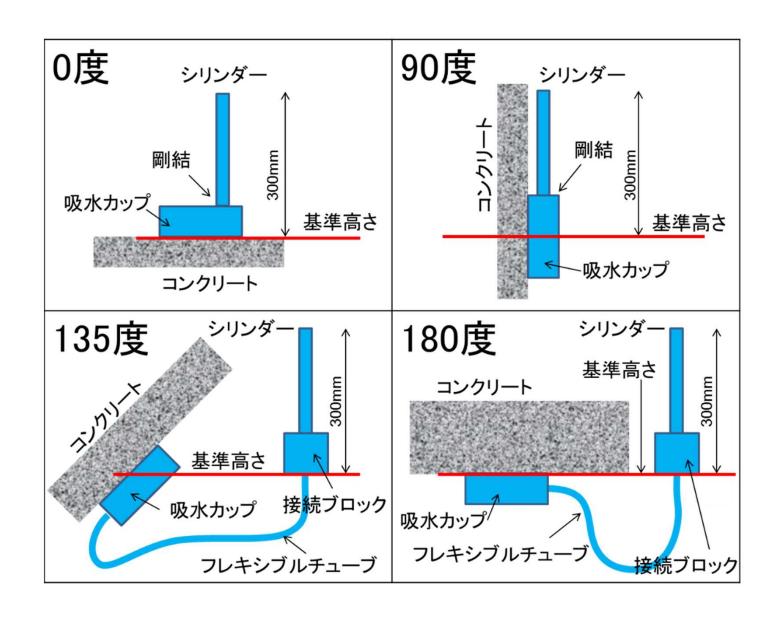



#### 水セメント比別

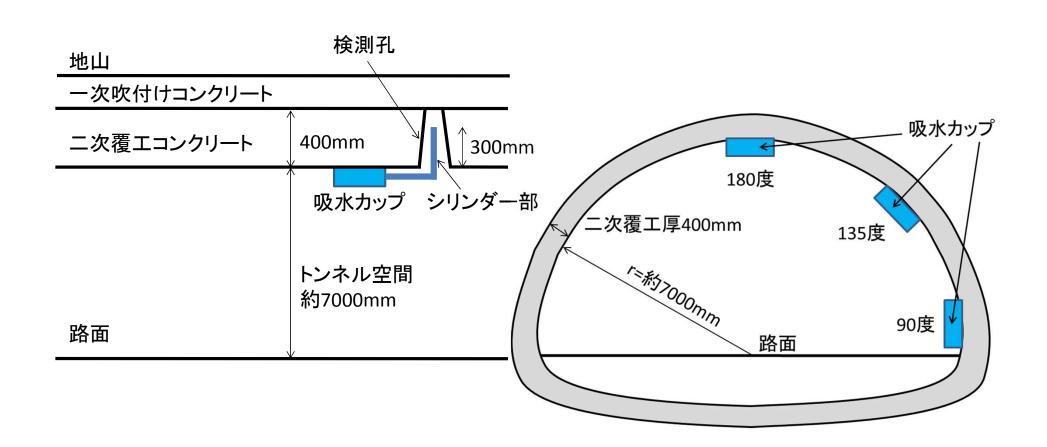


#### 下面に適用できる方法の開発

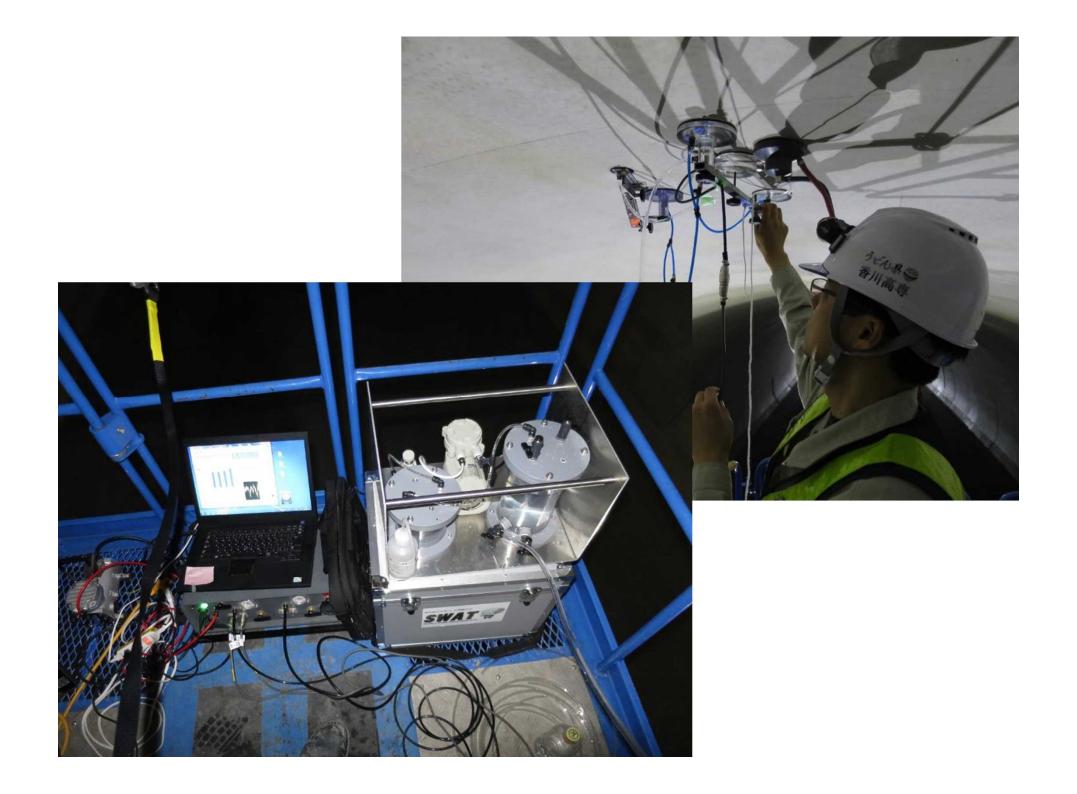
本研究助成以前の簡易方法


#### 壁面方式の注水方法




(1)注水時

(2)注水完了•計測時


#### 水頭の付与方法の一覧



# トンネルへの適用事例

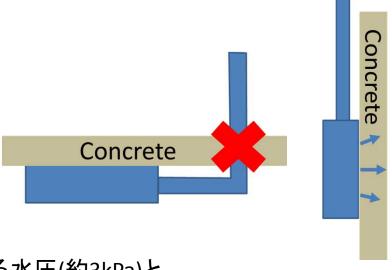






# 張出し床版下面への適用



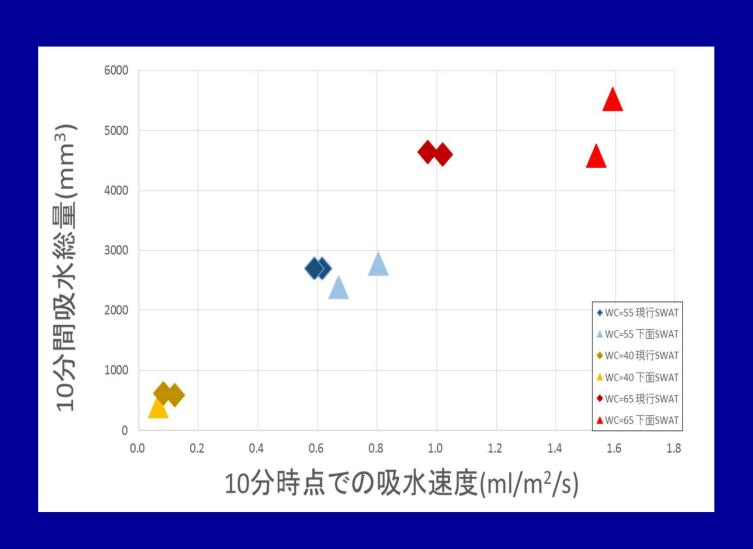

# 本研究助成による下面に適用できる方法の開発

#### 現行の表面吸水試験(SWAT)での問題点

現在のSWAT試験機は装置から鉛直に 立てたチューブ内の水の時間ごとの水 頭を計測することにより試験を行う。



床版裏などでは水頭を取るための チューブを立てるスペースをとることが できない。




SWATでは、コンクリート表面に雨による水圧(約3kPa)と 同等の圧力をかけながら吸水量を測定するので・・・

外部に飛び出す水頭付与のシリンダーを用いない表面吸水試験法の開発

# (装置の詳細は知的財産処理が 完了していないので非公開)

#### 現行方法と提案方法との比較



# 開発した方法を用いての実構造物 桟橋を用いての検証

# K県 M港での検討



# K県 T港 での検討

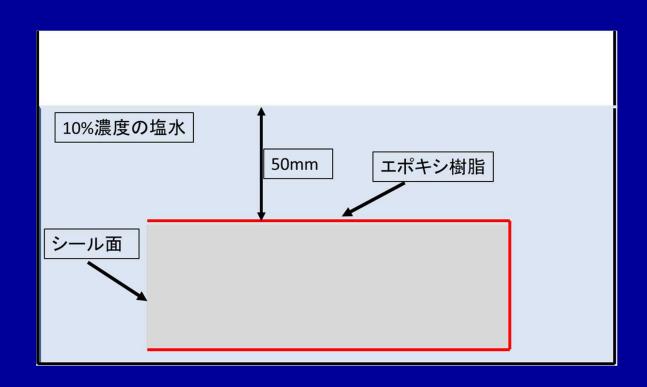


# 船上での測定

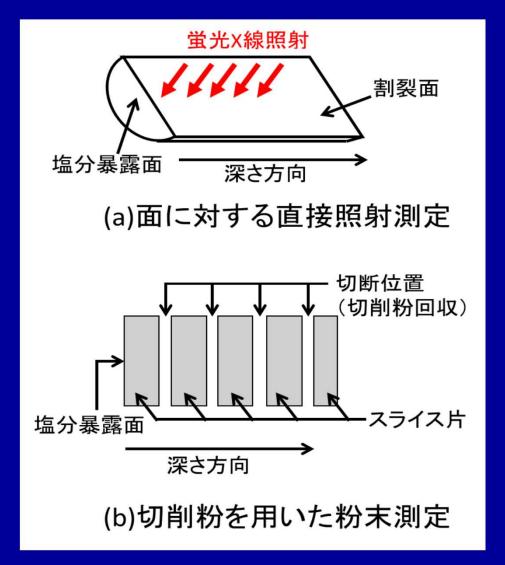


# 現地での既存方法との比較




# 塩化物イオンの拡散係数との対応

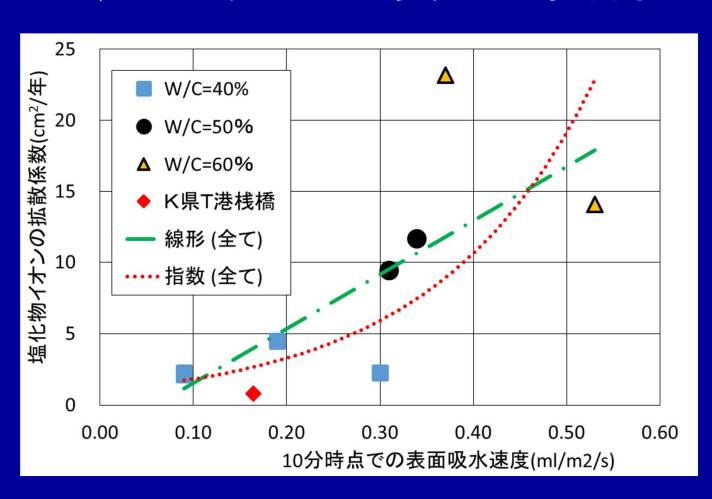
# 使用した供試体


| No. | 供試体名   | W/C<br>(%) | セメント   | 脱型時の材齢<br>(日) | 10分時点の吸水<br>速度(ml/m²/s) |
|-----|--------|------------|--------|---------------|-------------------------|
|     |        |            |        |               |                         |
| 1   | 40-S   | 40         | 普通セメント | 7             | 0.09                    |
| 2   | 40-A   | 40         | 普通セメント | 1             | 0.09                    |
| 3   | 40-AD  | 40         | 普通セメント | 1             | 0.19                    |
| 4   | 40-W   | 40         | 普通セメント | 1             | 0.09                    |
| 5   | 40-SD  | 40         | 普通セメント | 7             | 0.30                    |
| 6   | 40-WD  | 40         | 普通セメント | 1             | 0.18                    |
| 7   | 60-A   | 60         | 普通セメント | 1             | 0.37                    |
| 8   | 60-AD  | 60         | 普通セメント | 1             | 0.53                    |
| 9   | 60-WD  | 60         | 普通セメント | 1             | 0.14                    |
| 10  | 60-SD  | 60         | 普通セメント | 7             | 0.36                    |
| 11  | 50A-1  | 50         | 普通セメント | 1             | 0.34                    |
| 12  | 50A-2  | 50         | 普通セメント | 1             | 0.39                    |
| 13  | 50S-2  | 50         | 普通セメント | 7             | 0.24                    |
| 14  | 50W-1  | 50         | 普通セメント | 1             | 0.19                    |
| 15  | 50AD-1 | 50         | 普通セメント | 1             | 0.36                    |
| 16  | 50SD-2 | 50         | 普通セメント | 7             | 0.31                    |
| 17  | 50WD-2 | 50         | 普通セメント | 1             | 0.18                    |

| 末尾のアルファベット | 養生方法                                          |
|------------|-----------------------------------------------|
| S          | 材齢1日から7日まで封緘養生21日まで20℃湿度60%で気中養生              |
| Α          | 材齢1日から21日まで20℃湿度60%で気中養生                      |
| AD         | 材齢1日から7日まで20℃湿度60%で気中養生21日まで50℃湿度30%の恒温恒湿槽で乾燥 |
| W          | 材齢2日から8日まで水中養生21日まで20℃湿度60%で気中養生              |
| SD         | 材齢1日から7日まで封緘養生21日まで50℃湿度30%の恒温恒湿槽で乾燥          |
| WD         | 材齢2日から8日まで水中養生22日まで50℃湿度30%の恒温恒湿槽で乾燥          |

# 塩水浸漬試験による塩化物浸透




# 蛍光X線法による 塩化物イオン濃度測定







# 塩化物イオン拡散係数と表面吸水速度との関係



#### 本研究助成による成果

- 鉄筋コンクリート下面に適用できる表面吸水試験方法を開発した。プロトタイプを用いて、実際に供用中の桟橋で船上から測定した。
- 限られた数の供試体による実験によって、表面吸水速度と塩化物イオン拡散係数が相関がある結果を得た。さらに供用約10年の桟橋測定結果もその範囲に位置することを確認した。

装置の小型化・自動化・高精度化への改良、供試体のパラメータを増やしての検討、を今年度実施中である。