平成23年7月22日 SCOPE研究開発助成成果報告会

自律型水中ロボットと海底ステーションによる 水中構造物の 全自動・長期モニタリングシステム(その1)

東京大学 生産技術研究所 巻 俊宏

海洋構造物の水中観測

• 構造物の例

- 港湾(岸壁、防波堤・・)
- 沿岸(桟橋式空港、石油基地··)
- 沖合・海中(石油リグ、漁礁・・)

• 観測の目的

- 保守点検 (肉厚、外観・・)
- 環境調査 (堆砂、水質、生物・・)
- セキュリティ (外観、パトロール・・)

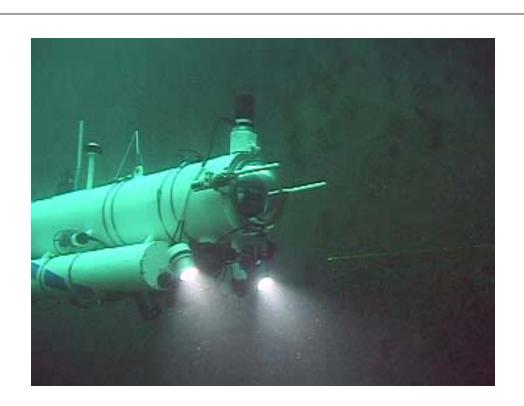
• 現在の観測手法

- 船舶
- ダイバー
- 遠隔操縦ロボット(ROV)

http://www.haneda-d.jp/d now/photo.php

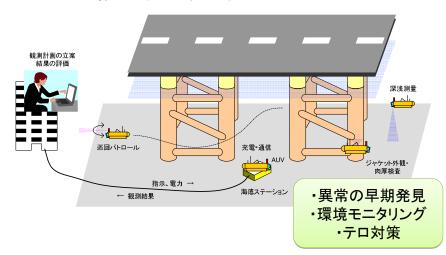
http://www.shibuya-diving.co.jp/index.php

自律ロボットの活用


• 自律型海中ロボット(AUV)

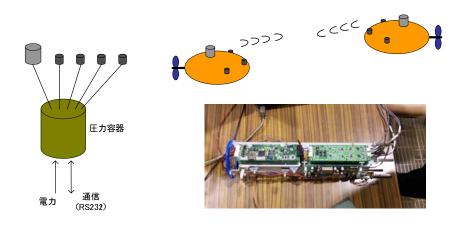
- エネルギー源と制御装置を内蔵し、無索・全 自動で観測活動を行う
- 資源探査、学術調査、防衛等の分野で実用 化されている

• 構造物観測における利点


- ケーブルが無いため、構造物に絡まる心配 がない
- 観測の質を一定に保つことができる
- 人間が監督する必要がなく、低コスト

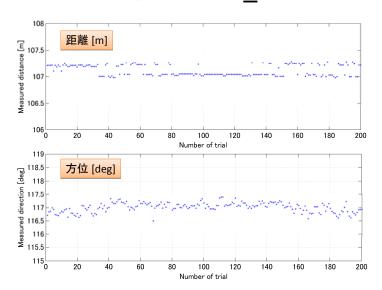


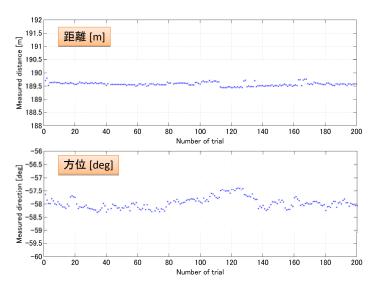
提案: AUVと海底ステーションによる 構造物の長期モニタリング


本年度の実施内容

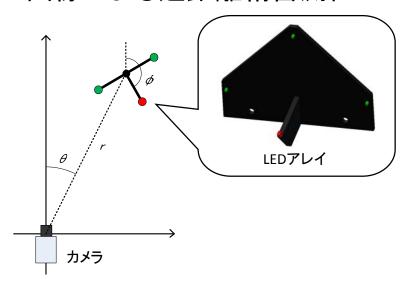
- ステーションを基準とするAUVの測位手法の開発
 - 音響による測位装置(ALOC)の実海域試験
 - 画像による高精度相対測位手法の開発
 - 両者の統合による広域・高精度測位手法の開発

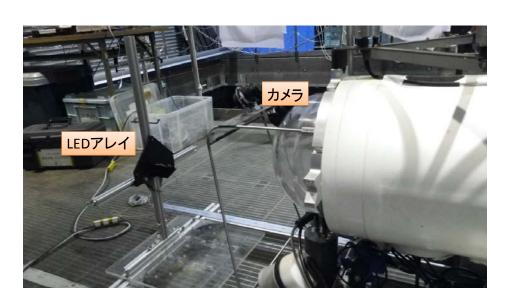
ALOC


- Acoustic Localization and Communication System
- 音響による水中相対測位・通信システム

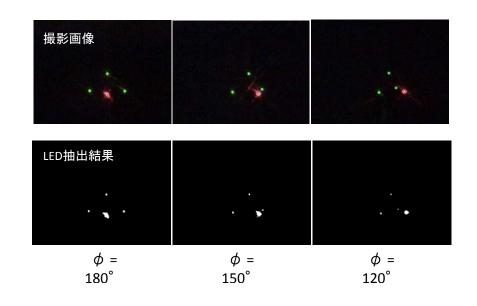

ALOCの実海域試験

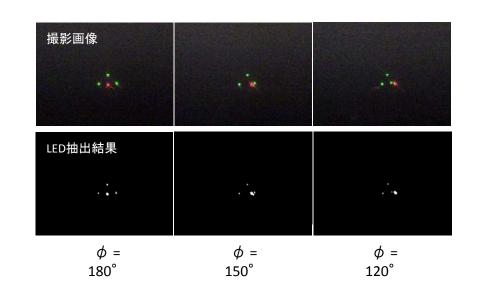
結果(ALOC2_A)

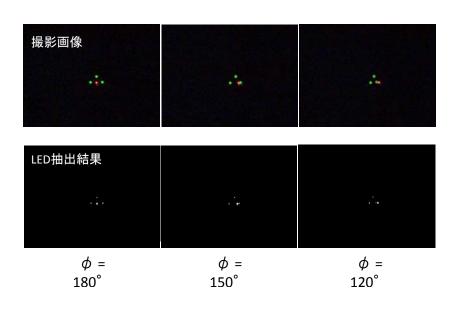

結果(ALOC2_B)

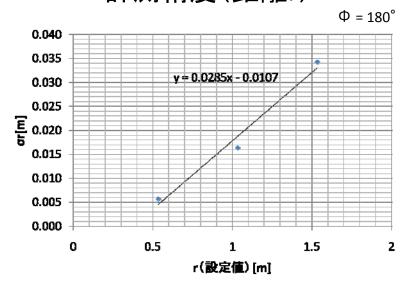

結果まとめ

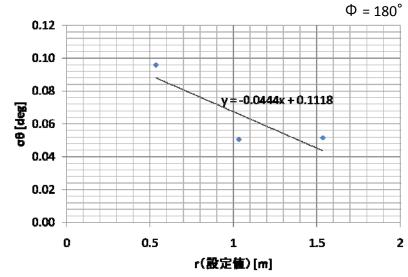
ターゲット	ALOC_2A	ALOC_2B
相対距離 [m]	103	190
測位成功率	1.00	0.99
通信成功率	0.57	0.10
距離計測値の平均 [m]	107.12	189.58
距離計測値の標準偏差 [m]	0.10	0.07
方位計測値の平均 [m]	116.98	-57.92
方位計測値の標準偏差 [m]	0.38	0.51

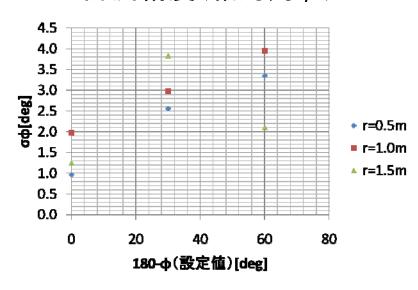

画像による近距離精密測位


水槽試験

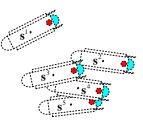

撮影結果(r = 0.5m)


撮影結果(r = 1.0m)


撮影結果(r = 1.5m)


計測精度(距離r)

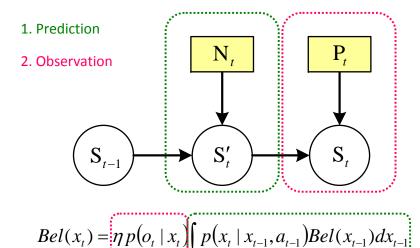
計測精度(方位角 θ)


計測精度(相対角 ϕ)

両センサの融合による測位手法

- パーティクルフィルタ
 - モンテカルロ法によるベイズフィルタの実装
 - 任意の状態遷移モデル、観測モデルを導入可
 - 非ガウシアンの状態推定可能
 - サンプル数により計算量と精度の調整可能

$$Bel(x_t) = \{s_t^i, w_t^i\}, i = 1,...,m$$

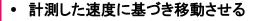

ベイズフィルタ

$$Bel(x_{t}) = \eta \underline{p(o_{t} | x_{t})} \underline{\int p(x_{t} | x_{t-1}, a_{t-1})} Bel(x_{t-1}) dx_{t-1}$$

プロファイラーによる

ナビゲーション情報による

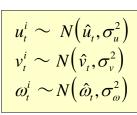
状態更新手順



Prediction

for i = 1,...,m

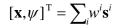
Bel(x,-1) の表す確率分布から一点サン プリング

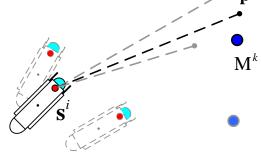

$$\rightarrow s_{t-1}^i = \{ \mathbf{x}', \psi' \}$$

$$\mathbf{x} = \{\mathbf{x}, \boldsymbol{\psi}\}\$$

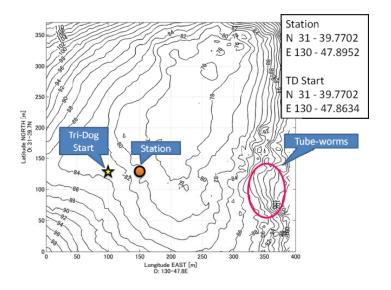
$$\mathbf{x} = \mathbf{x}' + \Delta t \mathbf{R}(\boldsymbol{\psi}') \begin{bmatrix} u_t^i \\ v_t^i \end{bmatrix} \qquad \begin{bmatrix} u_t^i \sim N(\hat{u}_t, \sigma_u^2) \\ v_t^i \sim N(\hat{v}_t, \sigma_v^2) \\ \omega_t^i \sim N(\hat{\omega}_t, \sigma_\omega^2) \end{bmatrix}$$

$$\psi = \psi' + \Delta t \, \omega_t^i$$

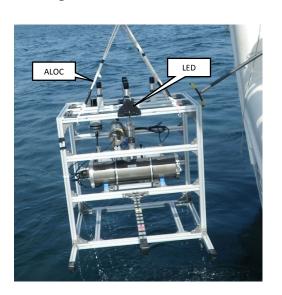

u, v: 水平移動速度, ω: 方位角速度

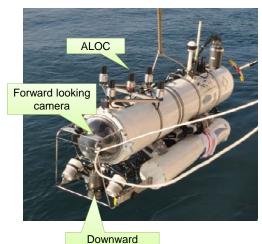

Observation → Output

for i = 1,...,mステーションとの相対位置関係よる重み付け

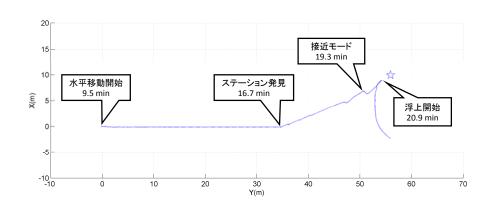

$$w'^i = \prod_j \max_k \left\{ L^{ijk} \right\}$$

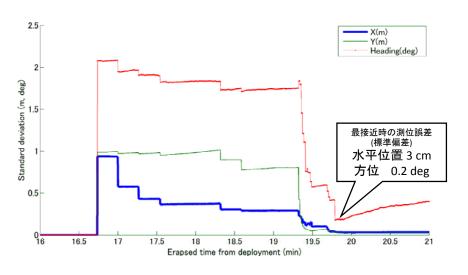
$$L^{ijk} = L(\mathbf{p}^j | \mathbf{s}^i, \mathbf{M}^k)$$
 正規化




総合試験

海底ステーション


Tri-Dog 1


looking camera

Length	2.0 m
Width	0.6 m
Height	0.9 m
Max. depth	110 m
Duration	4 hours
Thrusters	100W x 6
Processor (Main)	Pentium M 1.1 GHz
Processor (Vision)	Pentium 4 2.4 GHz

Tri-Dog 1の航跡

測位誤差の推定値

前方カメラの撮影画像

海底画像観測結果

範囲: 20 x 10 m

まとめ

- 本研究では、海底ステーションとAUVによる構造物の 長期モニタリングを実現するための、AUVの測位手法 を提案した。
- 提案手法は音響と画像によりステーションとの位置関係を計測し、速度や深度等の他のセンサ情報も用いて確率的に推定する。これにより長レンジとステーション近傍での高精度を両立する。
- 提案手法を個別に精度評価試験を行うと共に、両者 を融合した総合試験を水槽及び実海域で実施した。こ れにより提案手法の有効性を確認した。