コンクリート構造物の施工時 初期欠陥の対策技術の検討

早稲田大学 清宮 SCOPE 研究助成成果報告 2011. 7. 22

全体研究計画

- 2010年度 設計法の検討 温度ひび割れ・乾燥収縮の対策 膨張材、各種繊維補強の適用性
- 2011年度 施工法の検討

各種打継目処理工法の適用性 過密鉄筋などでの振動締固め方法

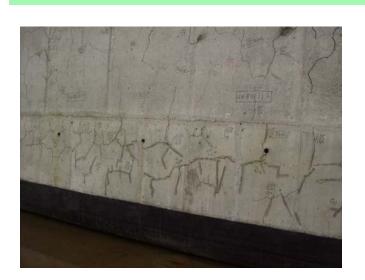
五洋、東亜、東洋と早稲田大学の共同研究

研究の動機

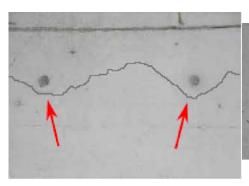
- コンクリートの初期欠陥は長年の課題 解決ほど遠い
- ・対策方法、解析方法:学会、大学、ゼネコンなど進歩
- ・理由:工費の削減、短い施工期間、熟練工の不足
- ・各種対策工法が提案 技術提案に使用:適用性は疑問

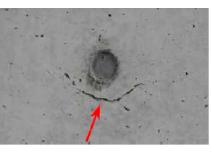
コンクリートの施工時の初期欠陥とは

定義:建設時に施工不良、不十分な設計に起因する損傷


ひび割れ ジャンカ(豆板) コールドジョイント 表面気泡 砂すじ

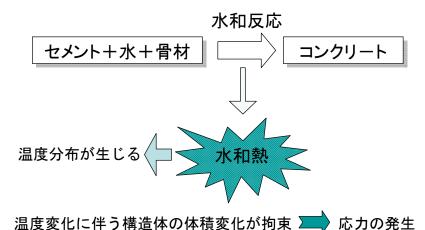
耐久性と美観に問題


ジャンカとコールドジョイント

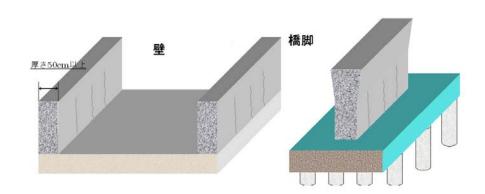


トンネル壁と天井のひび割れ

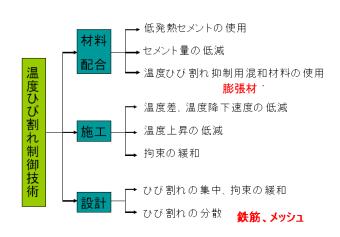
コンクリートの沈下によるひび割れ



初期欠陥のリスク


- (1)事前対策(設計施工で配慮)か 事後対策(補修を前提)
- (2)予算、工期、施工法と関連
- (3)技術提案ではどうすべきか
- (問題1)設計段階で検討不十分、施工時の変更困 難
 - ・・・・・欠陥:受注側のリスク負担
- (問題2)技術提案しても受注金額に反映されない
 - ・・・・・技術の無償提供

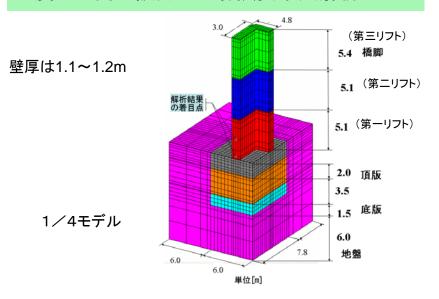
温度ひび割れ発生のメカニズム

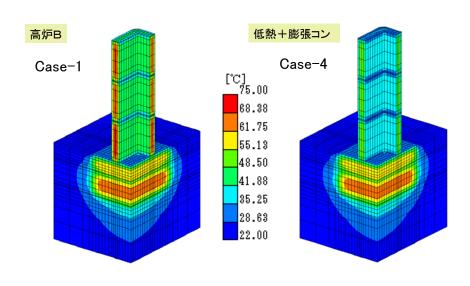


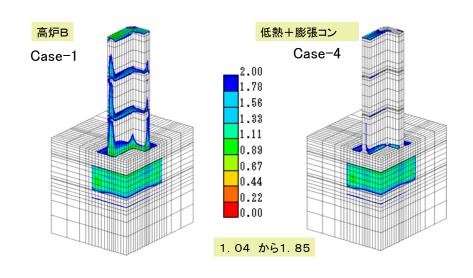
引張応力>引張強度 ■■■ ひび割れの発生

構造物での温度ひび割れの例

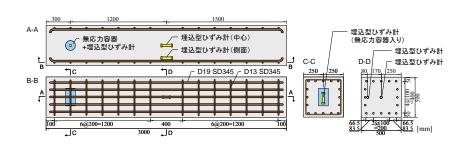
温度ひび割れの対策 (マスコンの施工)


東京ゲート大橋でのRC橋脚の施工 温度ひび割れの検討(scopeと関連)

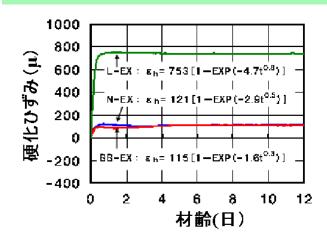

対策 膨張材の使用 低発熱セメント 高耐久性型枠


温度ひび割れ設計での有限要素法解析モデル

最高温度の分布



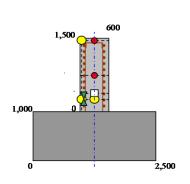
最小ひび割れ指数

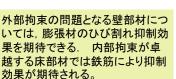

膨張コンクリートの確認試験

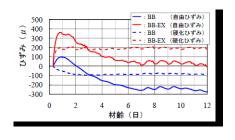
(1)小型梁モデルと(2)大型壁モデル

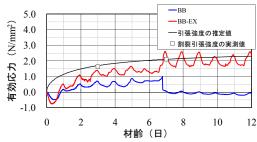
小型梁試験体の概略

膨張コンクリートの線膨張係数やひずみ性状は セメントの種類に大きく影響する

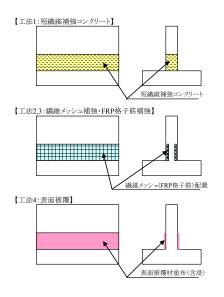



Lセメントと膨張材を組み合わせた場合, 他の組合せに比べて効果的に温度応力を低減できる


温度ひび割れのための 大型模型試験体



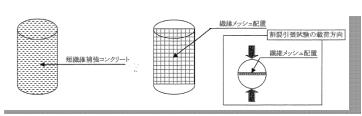
大型モデルでの膨張材の確認



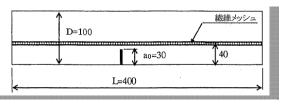
繊維などの各種補強方法

ひび割れ幅の制御アラミドとガラス繊維補強

■繊維材料を用いたひび割れ抑制方法


- (1)多くの工法が開発され、実施事例も 比較的多い。
- (2) 形状や材質が様々で効果の定量的な評価や比較が十分とは言えず、工法選定時に期待されるひび割れ抑制効果が不明瞭。
- (3) 力学的性能の確認を目的とした要素 試験および小型RCはりによる実験的検討 を実施。

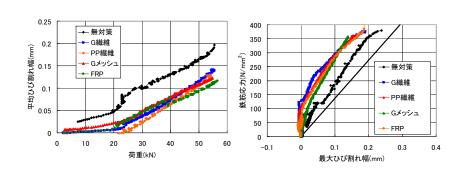
繊維の種類


これらの量を変えたら効果どうなるか?

繊維種類	繊維名称	標準混入量
ガラス繊維	アンチクラックHD	0.60kg/m ³
PP繊維	クラックバスター	0.91kg/m ³
ガラスメッシュ	ハイパーネット60	1枚
FRP格子筋	FTG-C3	1枚

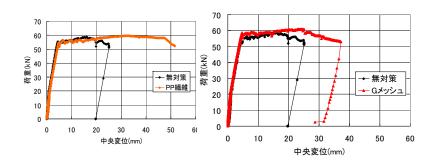
(試験体詳細:要素試験)

円柱試験体の補強方法



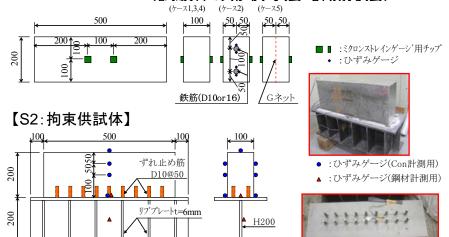
切り欠き曲げ試験体 繊維メッシュ補強方法

切り欠き曲げ試験の結果


- ①ガラス繊維の場合は破壊エネルギーの 増加に対する明確な効果が見られない。
- ②PP繊維の場合が無対策の場合に比べて40%程度破壊エネルギーが増加する。
- ③ガラスメッシュの場合は7倍以上の大きな破壊エネルギーの増加が見られる。
- ④各試験体の引張軟化曲線を推定できた。

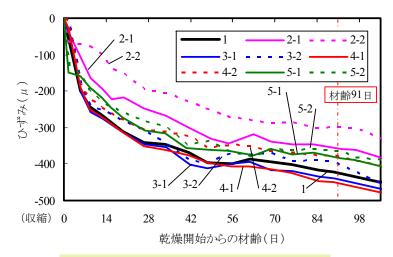
ひび割れ幅の影響

ひび割れ幅をほぼ半減できる


荷重変位関係への影響

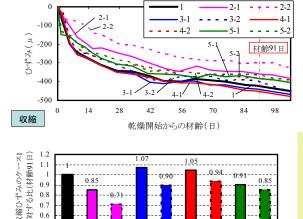
強度は変わらないが変形はのびる

繊維の乾燥収縮実験概要


【S1:無拘束供試体】(試験体の形状寸法・計測方法)

乾燥収縮試験のケース

検討	単位量(kg/m³)						鉄筋	Gネッ	拘束	条件	
ケース	W	С	S	G	Ad	G繊維	PP繊維	比(%)	卜(枚)	S1	S2
1						-	-	ı	-	0	0
2-1						-	-	0.7	-	0	
2-2						-	-	2.0	-	0	
3-1						0.6	-	ı	-	0	0
3-2	159	328	784	1041	3.49	1.2	-	ı	-	0	
4-1						-	0.91	ı	-	0	0
4-2						-	1.82	ı	-	0	
5-1						-	-	-	1	0	0
5-2						-	-	ı	2	0	


乾燥収縮の実験結果

鉄筋比大・・有効 繊維:さほど効果無し

乾燥収縮特性(実験結果)

繊維ネット

検討ケース

鉄筋

標準×2倍で やや収縮が低減

量を増やす必要

コンクリート打設と表面処理

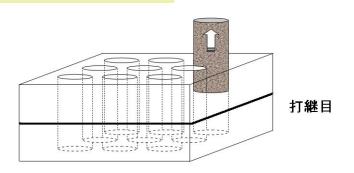
通常処理:コンクリート打設一仕上げ一遅延材散布一高圧水洗浄 処理剤: 同上 一処理剤散布

打継目対策の効果の確認試験

- B 無処理 -
- D通常打継処理

(凝結遅延剤+高圧水) 300 g/m³(原液)

J 打継処理剤 ①


(PAE系エマルション)200~300 g/m³ (原液)

C 打継処理剤 ②

(PAE・SBR系エマルション)300 g/m³ (原液)

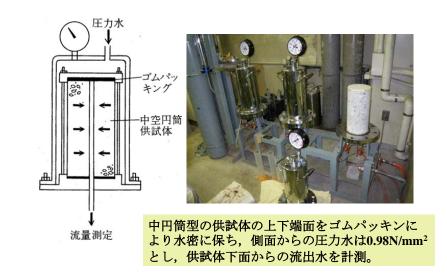
打継目の試験体の概要

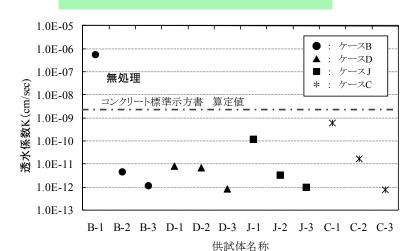
引張試験・促進中性化試験・透水試験(アウトプット法)

処理後の状況

無処理

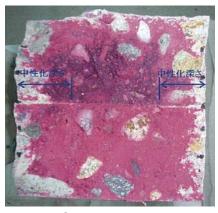
凝結遅延剤+高圧水




PAE系エマルション

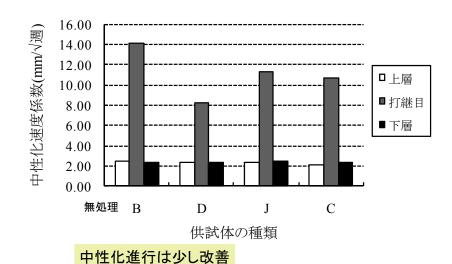
PAE・SBR系エマルション

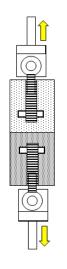
アウトプット法概要および実施状況


透水係数の結果

各種処理剤で透水性は確保できる

中性化深さフェノールフタレン液




無処理

打継処理剤①
(PAE系エマルション)

中性化係数の比較

純引張試験による打継面強度

打継面の引張強度

	28日 引張強度 N/mm²	91日 引張強度 N/mm ²
無処理	0.67	0.99
通常打継処理	1.59	1.73
打継処理剤 ①	2.05	2.09
打継処理剤 ②	0.92	1.20

強度は増加

まとめ

- 施工時の初期欠陥の対策法を検討
- 温度ひび割れ対策(膨張材、繊維)、打継面 処理など各種方法で効果が異なる
- 対策法の検討(適用範囲など)が必要 すべてが効果が十分ではない